“Nathalie Baye”

Vice snapshot with Vice palette

Made with the GIMP from a NB photo
and converted to C64 320x200
Hires Mode Bitmap
by Stefano Tognon
in 2008

“Tracker forever”

I c e Free Software Group

Qb E&Din 713
version 1.00
28 June 2010

General Index

EIOTIALS ...ttt sttt ettt ettt b et s e s bt et e a e bt et s ae e b e e b e eaeeearee s 4
IN WS, ettt ettt e sttt et a e s bt e s bb e e e a e e e e s s e nraneee s 5
GOALTACKET @t STF.....uiiiiiiiieiieeieeete ettt ettt e e bt e st e st e e s seessbee st e ssseesssesssaensaesssesssaaesassseeennnns 5
ACID 64 PIAYET 2.2-2.4 ...ttt ettt ettt sa et sae et st e sb et e st e s bt ebe s st e e saseesabaesnns 6
HVSC 49ttt ettt ettt a et s at e s bt et s st e bt et e s at e s bt et e sab e e e bt e eabeenareas 7
CatWeasel MIKAPIUS........cooiiiiieieeieeieet ettt ettt ettt e st e st este e seessbessbeesssaeseesssessseesssssaasens 7
High Voltage SID Collection Search V1.4........cc.cooviiiiiiiiiiieieiecriteeeiee et e e e esreessaeessaneeens 8
C64.5k Sidcompo 8 RAiOSITEAIM.ceeieireieieeiieeieeie et et e steereesteebeesaeeeaeesssessseessaessseessseesnnns 8
IMISSTAH. .. ettt ettt ettt ettt s et et e et e e st e b e et e eatesaeenb e s st enbeenbesaeenseensesatenasaenn 9
C6H4.SK SIACOIMPO B.....ooiiiiiiieiieciieeieeete ettt et e et e e setessaeesatesbeesseessseesseasssaesseessseeeessseessnssseesnnns 9
TPRONE Sid PIAYET.....coiniiiiiieeeeee ettt ettt ettt et e st s ebe e st e e b e e s e s 10
GOALTTACKET V2.68/2.69......cccciiieeiiieeieeeeee ettt st eete e ste e st e e st e e st e e s bt e s ssbaessassaaeesssnssssnaeens 10
SIAPLAYW2.5. .ttt st a et s st 11
XSIAPIAY 2.0.3. ettt ettt ettt ettt e et e e et e e st e e et e e e be e e e be e e s bt e e abaeeaaaeeeteaeebaeeentaaennraas 11
CGSC UPAALES. ..ottt ettt ettt et e e e et e st e e bt e st e e bt e sab e e bt e s st e e bt e eab e e bt esabeesseesabe e asaeeenanneas 11
ACID 64 Player Pro v3.0.0-3.0.2.....cciiieeeeteeeete ettt ettt ettt et sae e st be e s 11
HVMEC 0.9ttt ettt ettt st b e st st sbe st s st e bt et e sae e bt s besatebeenenas 13
HVSC H50.. ettt e e st e bt e st e s bt e st e e bt e e abeebeeeab e e e e abaeeeeanaeas 13
HVSC 51ttt ettt st ettt et s it e b e st s st e bt et e s aeesbe e beesenbeesaneesane 14
HVSC H#52..eeee ettt ettt ettt et et b e st s bbb e et esbe s bt e s esbe e saneenane 14
HardSID UNO/UPLAYccviiiiiieiiteeieeteeteet ettt ettt et et e st s e sata e st e ssnbaeesnsaaeennnneas 14
HVSC H53... ettt b et s bt e b e st s st e bt et e s st e be e bt e sesbeesabaesane 15
TSM & Freedom INEIVIEWccuiiiiiirieriteeeeete ettt ettt sttt sbe e s e saree e 16
JITTO4 TTACKET.....eeeutetiiieeiteteet ettt ettt sttt et s e bt st s bt e bt e b e sat e bt e b e satesbeebesnneesaneesane 20
IMLAIIE SCIROIN...cc.uutiiiiiieiiiee ettt ettt ettt st e st e st e eemb e e e sab e e e bt e e s baeeebaeeebaeeenraeessesnnnnnneees 20
TTTACKS ettt ettt b st s bt et e e b bt st sa e bt et sae et e satesaeebeeateene 21
o LA U=] N 1 OO OO OO PO P PO OPPUPPRRRRRRORRRRRRPPRPRE 22
INSTIUMENIES. ...etiiiieiteeeteet ettt ettt e b e e s abe e s sb e e s enbeesenbeesnraeees 24
TabIE Of VAIUES....ccuiieiiieieeeecece ettt s b e e be e st ae e be e st e esbeessaeeseesassseesnnnes 27
INSIUMENt EXAMNPLES.....eiiiiiiiiieeieiiteeieert ettt et este et eeste et e ssbe e st e ssseesssessseenssessseessssseesnnssees 28
L070)2 el 115370 1 TS OO OO UUUPTRRP 32
INSIAE JITTOA.....coeeeeeieeeet ettt ettt ettt e b et s bt e bt et e s bt e s bt et e sae e b e st e sstebeenbesaeenseenanee 33
Init &Play (IRQ) TOULIME.....cccvitiiiiieeiieeeiieeeiteeeteeestee e st e e saeeeseaeeesaaeeesaseeessaeessesssssssaeaessssssssseeens 33
Play PattBIM....cccuiieciieieeeieesiieeiteeste et esteeteestteebeesstessbeesssessseansaeessaesssaasseesssesssseasseesseesssesssseesnsssees 35
INStruments definitioN........cccciiiiiiiieeieeeeeie et ee e te e et e e be e s be e aaeeae e sraeeeensneas 40
Play INSITUITIENL....ceiutiiiiiieeiieeeite e ettt e et e e et e e st e estaeesaeeessaeesssseesssseeesseesssseessseesssesssssesssssssssnees 41
Play COMMANG.....cccueriiriiiiiiienieieetet ettt ettt et et sb e st s st e sb et st e b s sbesbte bt ebesaneesaneeeane 44
Play Hard-RESTAIT.....ccccuieeiiieeiieeeieeecieeect et e e st e ee e e esteeesteessabeessaseeessaeesnseesessssssaeasssssnsssneeens 50
CONCIUSION. ..ttt ettt ettt et e e be st s st et et e e bt e b e s bee s saeesmbeesebaeesnseenane 50

Hi, again.
It is long long time that this number is being writing. Delay after delay, but finally it is ready :)

You will see that the news section is very big this time as the previous number was released in
middle 2008.

The time for this delay is that my activity were very busy in this periods and most of the work
where putted into the programming of my personal music editor: JITT64.

This number, in fact, shows you all about JITT64.

In the first article we will see how JITT64 works from an user perspective, so after reading this
you will be able to produce music with the tracker.

The second article, instead, shows how the player works by analyzing his implementation: there
are lot of technical stuff in it.

For finish this editorial | like to give two words about Facebook. One night of many months ago |
just see one name into a box that Facebook use for let you find other people that maybe have
some of your interested or that you can know: Wally Beben!!

Yes, Wally Beben the famous SID musician that made epically music like “Dark Side” :)
He did not consider him so famous and he is out of scene for so long time right now, but it is al-

ways a pleasure to speak with this legend people, so thanks to Facebook for have proposed me
to find him.

Bye
S.T.

mailto:ice00@libero.it

Some various news of players, programs, and competitions:

+ Goattracker at SF + ACID 64 Player 2.2-2.4

+ HVSC #49 + Catweasel MK4plus

+ High Voltage SID Collection Search v1.4 + C64.sk Sidcompo 8 Radiostream
+ MSSIAH + C64.sk Sidcompo 8

+ Iphone Sid Player « GoatTracker v2.68/2.69

+ Sidplayw2.5 + XSidplay 2.0.3

+ CGSC updates « ACID 64 Player Pro v3.0.0-3.0.2
« HVMEC 0.9 « HVSC #50

« HVSC #51 « HVSC #52

« HardSID Uno/UPlay « HVSC #53

Goattracker, the crossplatform C64 music editor, is now available even at Sourceforce:

http://sourceforge.net/projects/goattracker?2/

You can so check the developed version thrown svn access and can contribute to it using the
features that Sourcefoge let you use.

Looking at the svn repository, we can find this interesting new document made by Simon Ben-
nett about the tracker:

Track eflects Wavetable {leit) Relative notes (wavetable right) Filtertable
88 Do nathing. aa Mull command. Herizontal is octave Shlﬂ' wvertical is interval aa Set cutoff as right column,
1ST | Slide up. (ST is an index in 81-8F | Delay step by 1-15 frames S]2 | |04 +2]| 43|+ | +5) +6] 47 B1-7F | Filter modulation step. Time in left
the speedtable, left and ~ column, signed* extent and direction
right columns combined.) EB=-EF | Inaudible r 5 |74 |00]OC |15 |24 [30)5C |48)54 of modulation in right column
- b2 |- |69 |75 |01 |eo |19 |25 |31 |30 |43]5s - - — -
25T | Slide down (a5 abowvel F8-FE | Execute track effect O-E with 88 -Fa | Filter configuration. Filker mode bit-
right side as data 2 |- |e&a |76 |02]0eE |18 |26 |32 |3E|4a |56 maskt in left column (fiter can bein
38T | Slideto note. As above, or mu ttiple mod es); resonance is first
ST = 00 slides instantly. FF Jump totable pos on right b3 | - |6B |77 |83 |0F [1B | 27 |33 | 5F | 4B | 57 value of right column and channel
side i i
3 |oo|6c|7s|0a |10]1c |28 |32 [ae]ac]cs bitmask® is second value.
45T | Vvibrato. Left column of 5T Walues from here are bit- FF Jumptoindes in right column. FF 0O
index is frequency, right is masks a L | B0 |79 | @5 |11 |1D |29 [35 |41] 4D |39 means stop.
amplitude «l Gate and intiate attack! b5 |62 | 6E | 7A |86 |12 [1E |24 | 36 [42 | 4E | 5A . Fil h 7
BAD | Set attack/decay. decay. [0 here initiates 5 3 |6F |78 | o7 | 23 | 2F | 28 | 37 | 45 | 4F | =8 Bit- ilter mode Channel
sustaindrelease.)
6SR | Set sustain/release 6 |64 |70 |7C |05 |14 |20 |=2c |38 |44 |50 |=c | MNAsks |88 | nore O | none
x2 Hardsync. Chl uses Ch3, Ch2 20 e 'R
7XY | Set waveform register to uses Chl and Ch3 uses Ch2 [+ 65 |71 |70 | @9 |15 |21 | 20 | 39 |45 | 51 | 5O
XY Wawetable takes pre- .
o P x4 Ringmod, channels as above | | b7 | 66 | 72 [7€ |04 |16 |22 [28 |38 [46 [=2 [=6 #0 | &P 2]z
; - BO LF & BP 3|12
BIWT | Set wavetable index x8 Test bit. Resets oscillator T 67 | 73 |JF | 8B | 17 | 23 | 2F | 3B | 47 | 53 | 5F
1; Usetriangle o P bl 3
x .
9PT | Set pulsetabis index = — Absolute notes {wavetable right) w | ireme s 12
Set fittertable ind b SE Sawto) i ical i
AFT itertable ind ex Herizontal is note, vertical is octave o P s |23
BRM | Set resonance to R and 4x Use pulsewave c |ck|D |D®|E |F |F¥ |G |(G#|Aa |ax |B 7 an
channel bitmask to M. n o al 2
8x Use naise o 81 |82 |83 |84 |85 |86 |87 |88 |89 |8 [8B
Set fitter cutoff to CO.
cca Wavetable (right) 1 |8C |80 [8E [&F |98 |91 |92 (95 [94 |95 |96 |97 Pulsetable
DXY | Set master wolumeto Y. IF
% s ot zero, copies XY to : 2|95 |99 [9a |96 |9C |90 |9E | 9F [A@ | a1 | A2 | A3 81-7F | Pulse modulation step: time
timing mark location 88-5F | Relative notes* upward 3 |na |as |ag a7 | as |ng |an |8 |ac |80 | 8E | AF in \t_aﬁ: column; signed* speed
[player address + 3F) - in right.
TF-68 | Relative naotes* downward a|se |BL |B2 [B3 | B4 |BS |BE | B7 |BS B9 |BA |EBB
EST | Global funk tempo. Shuf- 8X -FX | Set pulse width. X is high val-
fles between tempo speck 1] Unchanged note 5 |BC |BD |BE |BF | @ |C1 |c2 |3 |cC4 |5 |6 |[CF ue, right colmn is low value.
fied in left and right byt
A In Tt and rafe bytes 81-DF | Absolute notest C40 to B-7 6|cs |co |ca |ce |cc |co |[ceE | [po [p1 [D2 |D3 FF Jump to index in right col-
at speedtable index 5T,
7|04 | DS (D6 (D7 |D8 |D9 |DA [DB |DC | DD | DE | DF umn, P 00 stops the table.
FXY | Set tempo. 83-7F sets H
global tempo. 33-FF sets Chord speulngs
channeltempo + §0. Tem- major | minor | dim aug susd | dim? 7 mi? | b5 #5 " E #9 (11 |#11 |p13 |13
pos B8-81 use the funk
tempo values set by the E root 04 07 |03 07 |03 06 |84 08 |05 87 | 63 06 03 +0B | +84 | -07 +05 | -87 +@8 [+00 | +0E | +BF [+11 | +12 | +14 | 415
command above.
istiny |78 7B |77 76 | 7A 7D |78 7C |73 7B |77 7A VD +7F | +7E | -7B +7A | -7B +7C
Signed values 2ndinv |04 7B |03 78 |03 70 | @4 7C |05 7B | @83 78 70
91 -= 7F |up 3rd 93 06 7D
FF -» 88 | Down Ravenspiral GoatTracker Command Charl Correct to GoatTracker v2.67. Part of the Ravenspiral collaction. www.ravenspiralcom
GeoatTracker is by Covert Bitops, For mere infe see hitp//: sef It :

http://sourceforge.net/projects/goattracker2/

The C64 Music Player for all HardSID . =
. . - 3 o= B
devices and the Catweasel MK series | B ACD 64 Player - Commedore 64 Music Player
was updated in June 2008. Eile Help \’%
— Song Infarmation . Settings =
Mame 3 : Tera Cresta [3:41) WV Voice 1 (re—
What's new in version 2.2: Author : Martin Giakvway I Voice 2 m—
|mprovements Released : 1986 Imagine ¥ ‘oice 3
- Improved response time on the e ——————— | teed
. I~ Mutesl W Filker
HardSID 4U (new hardsid.dll re- ‘ n ‘ = | i ‘ > ‘@Song Galclad IO
quired) . =0 ~1 £ |H:E;TS 401 -l
« Improved playback on multi core — o
CPU systems during back- £ HvsC gan:ho_@r'st_a|ood_Pan_u.sid
= CEaMusic astan. s .
g;orggd playbaCk on ISA/PCI EB‘MGUS'UANS Eﬁﬁﬁéﬁ?ﬁkﬁge&d
Slap_Fight.zid)
+ Increased FIFO memory on L Sivect-Hank Prottype.si E
Catweasel MK4 for better play- . =
Ta T Times_of_Lore.sid 57
back of dlgl tunes Playing tune 001 of 011 /00050 Hz | PAL [Speed-001 | ES10CPU 012% |00:01:48 -
- Song length database is now == : . i

loaded when HVSC location is

updated in preferences dialog
Fixes
+ Clock is now displayed correctly during HardSID 4U playback
+ Vista layout issues

What's new in version 2.3:
New

+ Popup menu added to select sub tunes

+ Device selection can be temporarily locked when automatic device selection is configured
Improvements
Improved SID reset
Display of track bar for sub tune selection changed

« Numeric keypad can now be used for some short cuts

+ Added Voice 4 mute/undo mute short cut. See readme.txt file for all short cuts

+ Relocation area is renamed to Free Pages and is showing auto detect memory ranges
Fixes

+ Digi playback on ISA/PCI cards could cause timing problems on some systems

+ Window size and position startup option is now shown correctly

What's new in version 2.3.1:
Improvements
« Button icons
Fixes
+ Opening SID files via Internet Explorer is now possible. This makes it possible to play SID

tunes via the online SID search of www.hardsid.com

What's new in version 2.4.0:
Improvements
« Emulation improvements
+ STIL info can now be retrieved for a SID file if it is not played from the default HVSC loca-
tion
+ When HardSID 4U device is turned off while ACID 64 Player is running and turned on
again, playback can continue after song restart

Download it from http://www.acid64.com/

http://www.acid64.com/
http://www.hardsid.com/

High Voltage SID Collection: Update #49
Date: November 09, 2008

Hello fellow lover of SID music! Nice you found some time to read through this script, to see
what has been changed in the HVSC and for what reason. After this update, the collection should
contain 36,081 SID files!

This update features (all approximates):

x 1059 new SIDs
54 fixed/better rips
2 fixes of PlaySID/Sidplay1 specific SIDs
10 repeats/bad rips eliminated
431 SID credit fixes
232 SID model/clock infos
9 tunes from /DEMOS/UNKNOWNY/ identified
40 tunes moved out of /DEMOS/ to their composers' directories 14 tunes moved out of
/GAMESY/ to their composers' directories
Download HVSC Update #49 from the usual address: http://www.hvsc.c64.org/

The Catweasel MK4plus replaces the Catweasel MK4, which is sold out and discontinued. The
main changes are of cosmetic nature, but there have also been improvements made following cus-
tomer feedback in some places.

®X X X X X X X%

The one easily visible change is that the new card is no longer low-profile PCI compliant. This
feature of the old Catweasel MK4 was rarely used by customers, so it was decided to use the in-
creased space for a better arrangement of the two SID sockets. These are more easily accessible
now. Additional filters in the audio part are geared towards filtering noise from high-performance
graphics cards and low-quality power supplies. Another novelty is the external audio jack and an
angled internal audio connector for better accessibility.

Check: http://www.vesalia.de/e_catweaselmk4.htm

http://www.vesalia.de/e_catweaselmk4.htm
http://www.vesalia.de/e_catweaselmk4.htm
http://www.hvsc.c64.org/

A new online site for searching tunes in HVSC is available at:
http://www.exotica.org.uk/wiki/Special:HVSC

This is an interface to the High Voltage SID Collection (Full Instructions). The search uses keywords and boolean operators. +apples +oranges will
return matches which contain both words (in any order). +apples -oranges will find return matches which include apples but not oranges. For a
phrase wrap it in quotes "apples and oranges”. Use the checkboxes to match strings exactly (you may also use wildcards in exact mode but it can
be slower). The quick search matches all fields except the STIL. For music for other platforms try the Modland Search.

— Search — Browse by

QUiCkSEEI’ChI Gﬂl Filemname # ABCDEFGHIJKLMNOPQRSTUVWXYZ
Author #ABCDEFGHIJKLMNOPQRSTUVWXYZ
Fllenamel O Authorl O)
Copyright # ABCDEFGHIJKLMNOPQRSTUVWXYZ
Copyright I O Yearl O Year 1952 1983 1984 1985 1956 1957 1985 1989 1990 1991 1992 1993
Pathl O ST”_I 1994 1995 1996 19597 1996 1999 2000 2001 2002 2003 2004 2005

2006 2007 2008 Unknown
SID Model any |- | check boxes for exact search
Path ALL DEMOS GAMES MUSICIANS/ ...

O show sTIL Show remixes Searchl 0-9ABCDEFGHIJKLMNOPQRSTUVWXYZ

Music and Information is maintained by the High Voltage SID Collection maintainers.
STIL information and HVSC meta-data is not available under the GFDL. See the Main HVSC site @ for license information.

Thanks to Jan Lund Thomsen of http:/remix kwed.org @ for the remix crosslinking.

Interface by BuZz (buzz [at] exotica.org.uk).

High Voltage SID Collection Search v1.4

Within the start of voting phase of SidCompo 8, a new online radio stream was made available
for listening all the compo tunes: http://88.73.79.157:8000/radio.ogg

Indirizzo Modifica Visualizza Wai Segnalibri Lettore Strumenti Impostazioni Finestra Aiuto
C20R Q0| =g
E¥ Indirizzo: | & http://88.73.79.157:8000/rad AJ

Bufferizzand 100%

@ @ O @ @ aut(vldisav | —%.0}” _:

http://88.73.79.157:8000/radio.ogg
http://www.exotica.org.uk/wiki/Special:HVSC

The MSSIAH is a MIDI cartridge for the Com-
modore 64.

It contains a suite of music applications that
starts instantly as you insert the cartridge and
start up the computer.

With these applications you can play the
C64's audio circuit (SID) via MIDI or stand-
alone with the internal sequencers.

MSSIAH is short for MIDI SID Software Inte-
grated Applications and Hardware and means
that the cartridge contains both software and
hardware to midify the C64. Since they are inte-
grated you won't need hard-to-get MIDI periph-
erals to hook it up to your synthesizer or se-
quencer.

Just plug in a MIDI cable and off you go!

http://www.8bitventures.com/mssiah/

IIIE.
sty
il -
{iiia
‘HHIF
s
nmml

il

This year was the Last SidCompo (the 8 of the series) that www.c64.sk organized. Next year
there will be some different kind of compo...

Here the result:

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Eskimonika by Stellan Andersson (Dane)

Intrinsic by Conrad/Viruz/Samar/Onslaught (Owen Crowley)
A Liquor Store Anthem by Randall

Love Land by Steven Diemer (A-Man/Xenon)

Two Minute Jam by Josep Barwick (Stainless Steel)

Stay Chill by Marcin Majdzik (PSycHo)

Rocco Siffredi Invades 1541-I1 by Kamil Wolnikowski (Jammer)

Stretch Marks by Hein Holt (Hein/Vision)

Christ 69 Electroclash Deluxe by Arman Behdad (Intensity)
Wander Fool by Vincent Merken (V)

Johnny Rocket by Uneksija (Antti Pitkamaki)

Back to Planet:dATA by LordNikon/Dekadence
fuckyou.progressivedata.fuckme by Sascha Zeidler (Linus)
Pixel Hell Level 9 by Hlkon Repstad (Archmage of Instinct)
Drunken Ninja Dance by Rambones

See You Later Oscilator by Kristian Myklebust (kribust)
Elegy by Peter Bergstrand

Levitation by Henne / The Dreams

Disco Dream by Richard Bayliss

Mustelid by Hukka/Dekadence

Ninja Life by G-Fellow / CiViTaS (Gerhard Flagge)

Upgrade by Dennis Hildingsson (Rusty46)

http://www.c64.sk/
http://www.8bitventures.com/mssiah/

In the App Store for the iPhone there is avail-
able a Sid Player for very low cost.

From hitp://iphone.vanille.de/sidplayer/ we can
get more informations:

“Sid Player brings you the sound of the Com-
modore C64 to your iPhone and the iPod Touch.
Enjoy game classics such as 'Commando',
'Arkanoid', 'The last V8' or listen to the music of
'Rob Hubbard', 'Martin Galway', and many others.

Sid Player gives you access to the High Voltage
Sid Collection (HVSC) consisting of over 33.000
songs from 1125 authors. Thanks to the unique
sound aesthetics, Sid music is now considered an
art of its own and there's a constant flow of new
creations.

A Sid file occupies only few kbytes, thus you
can quickly download C64 music via EDGE or
UMTS and listen for hours. The search function
enables you to find your favourites in a blink.”

iPod =

Hubbard Rob Commando

Gum ando (1/11)
{lHthdl‘d
1985 Elite

:‘Ermar-m

The new versions of Goattracker2 is available at Sourceforge:

v2.68:

+ Fixed set tempo -command overwriting frequencytable in 1 or 2 channel modes.

+ Fixed sound uninit crash with multicore processors (?)

- SID register write order tweaked to resemble JCH NewPlayer 21.

+ Unbuffered playroutine optimized & modified to resemble buffered mode timing more.
+ New reSID-fp engine (with distortion & nonlinearity) from Antti

+ Lankila integrated. Activated with /| command line option parameters 2 & 3.

V2.69:
« Fixed click bug in reSID audio output.
+ Newest reSID-fp code integrated.

Command quick reference by Simon Bennett included.

« reSID-fp filter parameters adjustable from the configuration file.

10

http://iphone.vanille.de/sidplayer/

This is just an update of the old Sidplay2/windows. Some facts:

Contains the latest (v32) filter distortion emu by Antti Lankila
Uses a lot of raster time (cpu). 35-45% cpu on my P4 2,4 GHz.
Looks just as boring as the old Sidplay2.

Works in Wine!

Sounds really great ;-)

Download at: http://noname.c64.org/csdb/release/?id=76056

DPLA ===
It is available from March 2009 the new ver- File Config Playlist Hotlist Extra About

sion of XSidplay2 (the sid player for Linux): _. - =

http://sourceforge.net/projects/xsidplay2/

Name : Eskimonika
Changes: Authar PO
e Allow to compile in Windows with QT3 Copyright @ 2008 The Last Compo [TM]
Remove LCD display bug when changin Songs : 1 (Startsong: 1)
e play bug 9INg |lclock Freg: PAL
audio Song speed: CIA (PAL)

; SID model : MOS 8580
e Add experimental support for ALSA sound Addroases | SOFOD. $0P80, $0F88

Iibrary Format : Play3ID one-file format (PSID)

e Add low level setting in audio FPlayer : JCH_MewPlayer

e Add clock frequency string (useful if ANY or |[[MultiSpeed: 4x
UNKNOWN field is set) [~ playlist enabled [loop playlist [random play

e Add multispeed indication (need to patch ' :
libsidplay2)

The Compute's Gazette Sid Collection maintained by Peter Weighill has made some little up-
date in March 2009, a big one in May 2009 (26% of increase) and one in May of this year.

Now the collection contains: 8395 MUS files, 1966 STR files and 2631 WDS files

Download from: http://www.c64music.co.uk/

In May 2009, the ACID 64 Player has
released a important version of the pro-
gram, followed after by other updates.

New (3.0.0):

- Fast incremental SID file search
on title, author, year and publisher fields

11

http://www.c64music.co.uk/
http://sourceforge.net/projects/xsidplay2/
http://noname.c64.org/csdb/release/?id=76056

Seek through SID tunes via slider bar

Digital clock

Scroll wheel support when hovering over grids and list boxes
Anonymous usage statistics

Improvements (3.0.0):

Tree view of folders

SidID search in properties menu is done in background now to access dialog faster
Emulation improvements

Keyboard navigation improvements

Many small improvements/fixes

Fixes (3.0.1)

On some machines the index file wasn't created correctly (re-indexing is required)
Indexing of folder with a few SIDs is fixed

Seek speed isn't dependent anymore on fast forward limitation

STIL and SLDB info are now working for files outside HVSC

Minimal horizontal width isn't locked to previous width anymore

Improvements (3.0.1)

STIL window can always be opened now and doesn't close automatically anymore
Improved handling of SLDB entries

Digital clock color changed

Changed a few keyboard short cuts

A few other small improvements/fixes

Fixes (3.0.2)

No error anymore when last directory was a root folder
Corrected memory bank setting for PSID tunes

Resizing window was corrupting active row of search grids
Minimal width is now set correctly

Improvements (3.0.2)

Last played file is remembered now when ACID 64 is started

When Folders tab is clicked, the current selected file will always be visible

Special characters @ and @ can now be searched by o or oe (re-indexing required)
Pressing escape in search boxes will now select the text instead of clearing the input
Selecting a search filter will change the color of the filter box

Copy filename strips HVSCRoot automatically

Seeking (dragging thumb) can now be cancelled by pressing escape key or by pressing
right mouse button

Scrolling search results will now update rows immediately without releasing the thumb
Clicking on a folder name in Folders tab will expand the folder

Changed "Browse" tab name to "Folders"

Download at: http://www.acid64.com/

12

http://www.acid64.com/

The High Voltage Music Engine Collection ha released a new version at:
http://digilander.libero.it/ice00/tsid/hvmec.html

The collection now contains:
e 140 editors
e 84 trackers
e 70 others program

A new Wordpress version of the collection will be created at this location:
http://hvmec.hellospace.net/blog

Info Editor Tracker Other

Demo Music Creator — v4.0 [4x] (o StatPress |

o Visits today: 1
= Visits page totals: 89

 Visitatori site total: 178

Demo Music Creator — w4 0 [4x]
(c) 1987 Keen Acid 2
Brian/Graffity, Moog/Keen Acid '

Editor

[& Read More 2 No Comments o Editor (25)
2 0.9(5)

a AE(18)
2 L UL R

Demo Music Creator — v4.0 [2x]

Date: May 01, 2009
After this update, the collection should contain 36,000 SID files!
This update features (all approximates):

678 new SIDs

59 fixed/better rips

573 PlaySID/Sidplayl specific SIDs eliminated

189 repeats/bad rips eliminated

482 SID credit fixes

135 SID model/clock infos

15 tunes from /DEMOS/UNKNOWN/ identified

10 tunes from /GAMES/ identified

36 tunes moved out of /DEMOS/ to their composers' directories
11 tunes moved out of /GAMES/ to their composers' directories

As you can see, a great amount of files were eliminated in this update.

We decided to remove all the old _PSID files that have a RSID equivalent.

Those _PSID files were only hacks meant for digitized sounds to be played in Sidplay1, but not
on real C64. The _PSID files will be eliminated in every future releases as soon as new RSID ver-
sions of the same .sid files are added. For those still needing the _PSID files we have put them in
a separate archive: http://hvsc.c64.org/Downloads/C64MUSIC_PlaySID.rar

Download HVSC Update #50 from the usual address: http://www.hvsc.c64.org/

13

http://www.hvsc.c64.org/
http://hvsc.c64.org/Downloads/C64MUSIC_PlaySID.rar
http://hvmec.hellospace.net/blog
http://digilander.libero.it/ice00/tsid/hvmec.html

Date: August 22, 2009

After this update, the collection should contain 36,937 SID files!
This update features (all approximates):

950 new SIDs

93 fixed/better rips

6 PlaySID/Sidplayl specific SIDs eliminated

14 repeats/bad rips eliminated

320 SID credit fixes

159 SID model/clock infos

8 tunes from /DEMOS/UNKNOWN/ identified

6 tunes from /GAMES/ identified

38 tunes moved out of /DEMOS/ to their composers’ directories
14 tunes moved out of /GAMES/ to their composers’ directories

Download HVSC Update #51 from the usual address: http://www.hvsc.c64.org/

High Voltage SID Collection Update 52
Date: December 24, 2009

Hello fellow lover of SID music!
After this update, the collection should contain 37,801 SID files!

This update features (all approximates):

874 new SIDs

65 fixed/better rips

0 PlaySID/Sidplayl specific SIDs eliminated

12 repeats/bad rips eliminated

470 SID credit fixes

174 SID model/clock infos

17 tunes from /DEMOS/UNKNOWN/ identified

2 tunes from /GAMES/ identified

25 tunes moved out of /DEMOS/ to their composers' directories
4 tunes moved out of /GAMES/ to their composers' directories

Two new Hardsid cards are available:
http://www.hardsid.com/

e HardSID Uno
e HardSID UPlay

Here the features for all the cards:

14

http://www.hardsid.com/
http://www.hvsc.c64.org/

HardSID Uno:Enjoy over 36000 wonderful C64 tunes in high-quality played back on a real SID

chip!

Ideal for SID Players, C64 Emulators, SID Trackers

USB connection (compatible with both 2.0 & 1.1)

No power supply required! Use it with a notebook just anywhere!
Supported by the HardSID 4U Winamp Plugin! (seeking, sub-tune handling, IR remote
controlling)

Superior sound quality (..it is a HardSID!)

Support for one SID chip of any version (old: 6581, new: 8580/6582)
Updateable firmware over USB

Drivers for Windows XP/Vista/Win7

Cycle-accurate playback of your favorite SID tunes

Digitized sound + high-speed playback with low CPU utilization
Seamless playback of .sid tunes while you work on your PC

One analog SID sound output (jack)
USB connector for connecting the unit to a desktop PC or a Notebook

HardSID UPlay: Do you need both old and new SID versions for playback? You need the Hard-
SID UPlay then!

You can install two SIDs in it: one old 6581 + one new 8580/6582
Switch between the two SIDs simply from the player software
Ideal for SID Players, C64 Emulators, SID Trackers

USB connection (compatible with both 2.0 & 1.1)

No power supply required! Use it with a notebook just anywhere!
Supported by the HardSID 4U Winamp Plugin! (seeking, sub-tune handling, IR remote
controlling)

Superior sound quality (..it is a HardSID!)

Updateable firmware over USB

Drivers for Windows XP/Vista/Win7

Cycle-accurate playback of your favorite SID tunes

Digitized sound + high-speed playback with low CPU utilization
Seamless playback of .sid tunes while you work on your PC

One analog SID sound output: Outputs the sound of the actually selected SID chip (jack)
USB connector for connecting the unit to a desktop PC or a Notebook

Date: June 25, 2010: After this update, the collection should contain 38,714 SID files!

This update features (all approximates):
1045 new SIDs

897 fixed/better rips

20

PlaySID/Sidplayl specific SIDs eliminated

133 repeats/bad rips eliminated
1076 SID credit fixes

81
23
10
81
11

SID model/clock infos

tunes from /DEMOS/UNKNOWN/ identified

tunes from /GAMES/ identified

tunes moved out of /DEMOS/ to their composers' directories
tunes moved out of /GAMES/ to their composers' directories

15

As this number comes out many times after the previous issue, | decided so to add many inter-
view to compensate for this ;)

| finally got two interviews from TSM and Freedom, two composers that take place to the devel-
op of Pushover game. The interview is made as “double”: (almost) same questions to all. This is a
kind of interview that is quite popular in ltalian Television :)

| had used the [/] in the question to separate what is changed if the questions where a little dif-
ferent.

Hello Carmine [/] Freedom, could you introduce yourself and tell us what you do in real
life?

TSM: Hello everyone. My name is Carmine Migliaccio and | was born in Napoli, Italia, 30 years
ago. | was a computer programmer, but resigned from my job. Now | am looking for a new job and
I hope to find one that has little or nothing to do with computers.

Freedom: Hi, | am from ltaly. My job deals with mechanics.

When did you start to use a C64 and why did you start to compose music using a so old
chip?

TSM: My parents bought me a Commodore 64 in 1988. It was my main computer till 1992, when |
got an Amiga 500. | used my C64 mainly to play games and, from time to time, | wrote some sim-
ple Basic programs. | also made some experiments with the SID in Basic, but at that time | didn’t
know anything about Machine Language or music editors.

My first serious attempts at making music with the C64 came much later: around 2003! That's why
| don’t consider myself a scener nor a musician. Anyway | started to make music with the SID be-
cause | can’t play any conventional music instrument and | wanted to play one without the hassle
of practicing for years.

| had spent long time creating music modules on PC with FastTracker Il but | always ended up us-
ing the same few samples for anything and that was starting to bore me. | tried to create new sam-
ples and | also found huge sample libraries on the Web, but the whole thing simply didn’t stimulate
me anymore.

The sound of the SID is the thing that most amazed me when | got my C64 back in the day and |
still think that sound is the field where the C64 is most powerful. So, sooner or later, | had to do
something with it.

Freedom: | started using a C64 when | was a kid, in late 1992. It was given to me as a gift for my
birthday. | immediately started to code with BASIC and did some little experiments with music, but
nothing worth noticing. | composed my first tune only in 2005, using Odin Tracker on VICE emula-
tor.

I think I am in SID music because of nostalgia of the great fun | had with the Commodore 64 in my
childhood. | remember | used to listen to loading and game tunes very often, without being that
much interested on the game itself.

| do love SID music because of the 3 channel limit of the SID. You should be able to make the lis-
tener believe that there are more than just 3 voices... and that's a really interesting challenge which
requires quite a different approach of that used in common music.

16

What editors have you used for composing music and what made you choose them?

TSM: Before 2003, | had made some attempts at learning some editors, but | found each of them
to be too complicated for me. Then, | found CyberTracker by Cyberbrain. It was very similar to
FastTracker Il, the famous MS-DOS tracker that | knew very well. So, learning to compose music
with CyberTracker was just a matter of understanding how the SID worked. | already knew most of
it, so | could make my first tunes very soon. There was a big problem, though: the packer was (and
still is) in early beta stage. As a result, packed songs were too big and used too much rastertime.
Furthermore, due to a bug, some songs could not be packed at all. This meant that music made
with CyberTracker was almost unusable for demos, games, etc. so | stopped using it.

Later, | wanted to take a look at C64 machine language and, as an exercise, came up with my own
music routine. It's the simplest routine one could imagine, with no effects whatsoever, no
hardrestart routine and no memory optimizations. It works fairly well and uses a laughable amount
of rastertime. | made 2 songs with it (bath.sid and willow.sid), then | lost interest.

The turning point came in 2006. lan Coog, Roberto and Pippo79 were making a simple little game
called “Pick Up Sticks” and asked me to make a tune for it. | made it in CyberTracker, but it was
too big, so | decided to give GoatTracker a chance. About two weeks later, | had finished the new
version of the tune. Using GoatTracker was a real pleasure for me, because it has mouse support
and an interface very similar to that of FastTracker . It is thought in a very rational way.

Freedom: | started with Odin Tracker but immediately quit using it because of its strange way of
handling filters. Also, Odin Tracker routines are not very efficient and so too much rasterlines

are required. Then | switched to Goat Tracker which is a very easy to use cross-platform SID
tracker.

In fact, now | always use Goattracker. It is easy, it is powerful, very efficient and it comes with

a good documentation.

Are there any other music editors that you would like to use in the future?

TSM: GoatTracker is pretty much everything | need. Its only flaw is that it's a cross-tool. If there
was an editor designed for the 80-column mode of the C128, with 1351 mouse support and Fast-
Tracker-like interface, | would certainly love it.

Freedom: Maybe | would like to use a native tracker for C64 like JCH. But Goattracker just suits
my needs.

Duration based editor (like DMC, ...) vs tracker style editor (like JCH, ...): what is your opin-
ion about the two types of editors?

TSM: Well, | believe the answer is easily predictable by now. | honestly don’t understand duration
based editors, so | have no opinion about them. | really love tracker style editors, because they
match the way | think music myself.

Freedom: | absolutely prefer tracker style editors.

Have you ever thought to compose music using samples for having more that 3 channels
playing into a song?

TSM: I did think of it, but never tried.

Freedom: | actually prefer to force the 3 analog channels to create the illusion of more than 3

channels (at least, | try it, of course). However, | did a 4 channel sid tune using Pollytracker, but |
didn't release it.

17

You had produced [/] are producing some music stuff for the Pushover game (a game con-
verted from Amiga to C64, not yet released). Have you anything to tell us about this work?

TSM: Well, it was an exciting task indeed. Pippo79 and Raffox were (and still are) doing a very
professional job. | tried to get the songs as close as possible to the Amiga originals. | made some
of them from scratch and some by using format conversion tools. In the latter case, IIRC, | used
some tool to convert the MED originals to MOD. | performed some preliminary adjustments on the
MOD files, then | converted them to GoatTracker and added instruments and final corrections. The
title tune is made this way and | think it's the only tune of mine that will appear in the final version
of the game. When | gave up for personal issues, Freedom took over as musician. This game is
gonna be something special.

Freedom: | have been doing many tunes for this game. | had a stop but | am going to continue.
This game is a really, really nice project in my opinion. Trying to port those Amiga mods is quite
fun | must say.

Have you any important music/project planned to realize in future?
TSM: No | have not. | do have one unreleased tune, though.

Freedom: No, nothing at the moment.

Now some quick final (standard) questions:
Real machine vs emulator: what do you think about it?

TSM: They both have their pros and cons. | prefer the real thing, because | like to see old electron-
ics still functioning. | also like to put my hands in the hardware and mess with it :)

Freedom: | use emulators because | don't have enough room for original hardware. However, |
think the best thing is to use both of them. For many things, emulator are far more practical, but if
you want to watch a demo | think the real machine is the next best thing around.

6581 vs 8580 chip: any (musical) preference?

TSM: Well, | prefer the 8580. It's more versatile as it allows more combined waveforms. It is also
very consistent, as every 8580 sounds the same, unlike the 6581. Inconsistency isn’t the only
problem with 6581’s: they are very fragile. They often fail and sometimes they only work partially.
This is awful, because a user may think he has a working SID and curse the author of a tune for
the horrible sounds coming from the speakers.

Freedom: | prefer 8580 chip. Way too open filters but it features cleaner waveforms and it has less
noise. For instance, when you change filter type you don't get an unwanted noise as noticeable as
the one you hear in 6581. This makes it possible to change filter type on an instrument while a
note is being played and you get more sophisticated sounds. Also, | do love $51 waveform on
8580.

What is the worst and the better sid you composed?

TSM: Worst tune: “Q-Game”.
Best tune: don’t know, maybe “Vieni avanti cretino”, but it's a cover.

18

Freedom: Considering released stuff, my worst sid maybe is Exploring New Worlds. My better one
is probably Dreamlights, a cover of a tune by Chris Huelsbeck originally intented to be used in Tur-
rican.

Who are your best sid authors?

TSM: The first names that come to mind are Ben Daglish, Jeroen Tel, Rob Hubbard, Tim Follin,
David Whittaker and Chris Huelsbeck.

Freedom: Musicians of commercial games: Chris Huelsbeck, Jeroen Tel and Rob Hubbard. Talk-
ing about sceners: Dane, Drax, Jeff, Linus.

What are the best sids ever in your opinion?

TSM: Krakout’'s music, of course. | also like Ghouls’n’Ghosts’ title tune very much.

Freedom: Talking about scene music: | really love Arctic Circles by Dane. Dazzler by Mitch and
Dane. Special Agent Rocco Montefiori by Linus is also a very good sid in my opinion. | love Ode to
C64 by Jeff too.

From videogames, | really like ACE 2 by Rob Hubbard, Cybernoid Il by Jeroen Tel... The list would
be endless I think.

Finally, many thanks for the time you gave for this interview, and now would you say
something else to the our readers?

TSM: Thank you for the opportunity. What can | say to our readers? Enjoy your life, love each oth-
er and play Pushover when it's out! Byez!!

Freedom: | wish | had enough time to enjoy C64 music as much as | want... | hope I'll be able to re-
lease new stuff in the near future. Bye!

19

JITT64 (Java Ice Team Tracker) is my C64 cross-platform music tracker. It is written in Java for
being portable and use JSidPlay library for sound reproduction.

It is born with the idea to have a very freedom instrument implementation, using full features ta-
bles. Essentially you can have an instrument that use up to 2KB of data for its definition as the ta-
bles are not shared between instruments (only the packer will apply optimization in tables if possi-
ble for reduce space usage).

Due to this, the player is very rastertime consuming, but maybe you could be able to write even
up to 4X tune with the editor.

In this article we will see how the editor works and in the next we will look even from the inside
of his implementation, but remember that the program has an hypertext help that describe the pro-
gram in all of his aspect.

The application is composed by a big screen that is divided into 4 regions:

song panel

e track panel

e pattern panel

e instrument panel

E3- JITT64 - Java Ice Team Tracker 64 <2> =] [x]
Song Track Pattern Instrument Option Help
"y - LE
IEIEIFIFIEY o] 4P 000 OO
Name | | speed [o 8 1 2 3 4 5 5 7 8 9
Author [| Tunes IE . 0
0
Copyright | | © 6581 08580 D ANy | 000 ST Iv
= = = —— = — e
4 [H4bl [HdP [HLeEaQEE = 4 bW O
Pat. Tempo Dim. Pat. Tempo Dim. Pat. Tempo Dim.)
Cod [7 e[o [7 [esH| oF [7] oo Mmetrument [Name: | e
Note: | |
N I C N I C N [C
0 -0 -0 -
1 1 1 []HardRestart On/Off [] Gate Off Write Order
g g g [] attack/becay HR | N. Ticks ® Wave - ADSR
g g g Sustain/Release HR CctrlHR) ADSR - Wave
6 s s -
7 7 7 AD DIN SR D/IN | Wave | D/N | Freg. DIN | F
g g g 1 |STEP MO |REP INF|STEP NO |REP INF|STEP NO|REP INF| STEP MO |REP INF| ST«
2 =
10 [l 10 (| 10 3
11 11 11 a
12 12 12 5
13 13 13 5
14 14 14 -
15 15 15 3
16 16 16 o
17 17 17 10
18 18 18 i
19 19 19 12 |
20 20 20 o5 ~|
21 21 21 (| i [»]
22 22 22
23 23 23
24 _ [24 _ [24 |
25 d|[IPT d|[IPT =
1l Il

mailto:ice00@libero.it

The song panel is where you can enter some information about the tunes you are composing:
e Name (of the songs)

Author

Copyright

Speed of tunes (all tunes and voices have the same speed)

Number of tunes

Type of sid chip to use for these tunes

The track panel is divided into 3 rows (one for each voices) and contains the patterns and com-
mands to execute for the song you are editing. It has even buttons for playback reproduction of
the tune and a semaphore that indicate if the tune is ready to be played.

The pattern panel is divided into 3 sub-column regions: one for each voices and then you can in-
sert the event (note/instrument/command) for each ticks. The tempo and dimension of the pattern
can be selected independent from each one.

The instrument panel is composed by a upper region where you can insert some informations:
e Name (of instrument)
e Note (a comment about an instrument)
e Hard-restart/restart of note information

It has even a middle part where there is a big tables of values (that give the timbre of the instru-
ment) and in a low part that is a piano roll, useful for testing the instrument.

4/» 06|00 0

ol o 1 2 3 4 5 6 7 8 9
REF | 07 | © 6 7 0 0 8 9 6

@ ReF o5 [2 5 4 [REP O | 2 5 a
REP | 02 | 1 |[TR+a| 1 1 | TR4| 1 [TR¥0| 3

o0:00 | 4[] [

The tracks that compose a tune is entered into the above panel. The upper row is for voice 1,
the middle for voice 2 and the lower row for voice 3.

In a cell of the table you can enter 4 type of commands (available with the right click of mouse):

Value Description
0..222 This is the number of pattern to play
REP Repetition command. This command is for repeat a number of time the next

commands. Unlike usual command, in JITT64, you can specify a sequence
of commands to repeat. Dimension is 16, while the number of repeat is from

21017

TR Transpose command. Transpose can goes from -15 to + 15 steps. When
you set a transpose, all the patterns that come after are transposed of that
quantity.

RST Restart command. This is always the last command in the track and it is for

inserting the point (index in table) where we want to have the tune to restart.
We can even let the tune finish without restarting.

21

The best way to see the commands in action is with some examples:

[4/PIO[G[CIGI0

| o[o 1 2 3 4 5 B 7 B g
0 1 2
@ 0 |TR+1| o0 | TR1| 0O
REF | 21 0 1 2
00:00 [4[I] [

In the first voice, the pattern 0, 1 and 2 are play in sequences, then voice stops to play. In the
second voice, pattern 0 is play at expected rate, than it is played 1 half step over, and then 1 half
step below. This sequence restarts forever. In the last voice, the pattern 0, 1, and 2 are played two
times in sequence, then the sound for this voice ends.

The pattern panel is composed || Q[D] 0 [/ @ D] 0 [o=|[q B 0 [
by 3 eguals sub-panel: one for Pat. Tempo Dim. |Pat. Tempo Dim. |Pat. Tempo Dim.
each voice. 1H EE 16K | 12 EE 26| 2 EE 1

In JITT64 | choose to have that N e N £ L

. 0| E-2 1 - 0 | F#5 4 - 0 2 -
each pattern has his tempo and || > 1 1 1
his dimension. Although the di- || 2 [E=2[1 2 2
mension is quite common to be || 3|E=2]| 1 3 3
different for different patterns, the |2 - - 2
tempo is usually set by command. 5| B2 | 1 5| E5 | 4 &
7 E2[1 7 7

With the JITT64's option you ||-8 CE{fj 1 2 s 2
can set the tempo and pattern di- || 2 1 10 10
mension to use by default. 1182 [1 11 11

12| E2 | 1 12/ D5 | 4 _[l12 3

In the sub-panel you have the |13 22— — —
splitter (and buttons) for selecting || 1562 [1 15 15
the pattern to edit, the splitter for 16| D-1 | 1 [0boS 16/ D=0 1
selecting the octave to use for L L FE;LE i ——
keyboard notes insertion and the }3 }3
checkbox for mute/unmute the 20 20 0Oc 05
voice when playing. gé

In the pattern table there are || 3i || |
tree columns: x|l 25 = =

1. Notes

2. Instruments
3. Commands (with parameters)

Using right click you can open the menu to insert the notes/instrument/command to play at that
time tick. It is also possible to insert notes with keyboard using Protracker or DMC mode.

With the same mouse key it is also possible to cut/copy/paste/clear selection from one pattern
to another and load/save the pattern from/to a file

In JITT64 now it is implemented 16 commands, but more are planned to be added in future ver-
sions:

22

N Command Description
00 Stop Command If parameter is not zero, this apply a stop action for the bit-
field commands:
e bit O0: stop Arpeggio
e bit 1: stop Portamento up
e bit 2: stop Portamento dn
e bit 3: stop Tine Portamento
e bit 4: stop Vibrato
e bit 5: stop Pulse up
e bit 6: stop Pulse dn
01 Set Tempo Set the tempo to use from this position in pattern. There is
even the possibility to use the global (the one specify into the
pattern spinner)
02 Set Attack/Decay Set the attack/decay to use for the current voice
03 Set Sustain/Release Set the sustain/release to use for the current voice
04 Set Volume Set the volume of the tune. Volume starts at 15 at the
initialization of tune.
05 Set Arpeggio Set the arpeggio. There is a speed to choose for the arpeggio
and two tone to add to base note and second note.
06 Set Portamento up Set the amount (*2) of frequency to add for portamento up
effect
07 Set Portamento dn Set the amount (*2) of frequency to subtract for portamento
down effect
08 Set Tone Portamento Set the amount (*2) of frequency to add/subtract for a tone
portamento effect.
09 Set Vibrato Set the speed and the amount (*16) of frequency variations
for a vibrato effect
OA Set Pulse Slide up Set the amount of variations for a slide up of duty cycle
0B Set Pulse Slide dn Set the amount of variations for a slide down of duty cycle
0C Set Auto Fade out Automatically fade out the volume with the given delay
0D Set Filter Type Set the filter type (high, middle, low) and voice where to use
OE Set Filter Resonance Set the filter resonance to use
OF Set Filter Cut off Set the filter cut off to use
10 Set Gate Sustain/Release Set the sustain/release to use for current voice, but with gate

release (you can go up in volume level)

Future command that will be implemented are:

Hardrestart command: This will trigger an hard restart in next note even if instrument did
not have it

Pointer command to instrument This is for activate an effect in an instrument at level
pattern. Note that this already works using instrument, but is not so intuitive

Hifi portamento A portamento independent from octave/note

Hifi vibrato A vibrato independent from octave/note

Vibrato slider Automatically increase of frequency in vibrato

23

-~ JITT64: Instrument [=][o][2¢]
Instrument
HeEda/eB03 =%« 4p »wold
Instrument IIE Mame: [test | .
Mote: [testl |
HardRestart On/Off [] Gate Off Write Order

00 | Attack/Decay HR QE N. Ticks) Wave - ADSR
fo Sustain/Release HR |40 | |40 Ctrl HR ® ADSR - Wave

AD DM SR DM Wave D/N Freq. DM Pulse D/M | Filt. F. D/M | Filt. R. D/N |Filt. Type DIN
1| a5 0|0 e8 0|0 11 00 | G#6 | 0|0 102 0[0 525 0|0 9 0|0 27 o0 |=
2 |STEF NO|REF INF|STEP MO[REP INF 41 0[]0 | Mote-3 | 00 +15 010 |STEP NO|REP INF/STEP MO|REF IMF|STEF NO|REP INF|=|
H STEF NO |[REP INF| +25 o]] -15 0J10
4 2048 o] [e] STEF 2 |REP INF
5 STEF 3 |REP INF
(5]
7
g
9 -

The instrument window is the most complex of JITT64 as it is for creating the timbre of instru-
ments. It has a upper part with some information about the kind of restart of note to use, a middle
part with tables of values and a low part with a piano roll (for test the instrument, but it is not jet ac-
tivated into the program).

Looking for the restart of note, there are tree kind of methods you can choose:
e Never use an action
If you did not check the Hard Restart and Gate off fields, no action is taken when a new
note start (so, all is left to you for preventing ADSR bugs).
e Gate off
If you check the Flag off field, then the gate bit of sid register is released before the end of
the note. How many ticks before this happen is given by the number you inserted into N.
ticks. Read the notes below for more information about this.
e Hard Restart
If you check the Hard Restart field, then those actions are taken before the end of the note
(even here using the N. ticks for the timing):
« Attack/Decay HR: this value is put as Attack/Decay when is time to start the HR
« Sustain/Release HR: this value is put as Sustain/Release when is time to start the
HR
« First Control HR: this value is put as Control when is time to start the HR
« Second Control HR: this value is put as Control when there is the last tick before
the new note comes
So, you can set all the values you want for having the HR.

The number of ticks you enter into the field have meaning that depend by the timing scale you
choose into pattern. Here some examples:
e Pattern Timing 5, Number of ticks 2: effective ticks are 2
e Pattern Timing 5, Number of ticks 4: effective ticks are 4
e Pattern Timing 3, Number of ticks 4: effective ticks are 3

24

This is for taking easier to test for Hard Restart when a pattern is finish and a new one (that
could or not containing a new note) is reached.

The last choice you have (but that affect all the actions for this instrument) is the order you want
that sid registers will be written:

Wave — ADSR: Wave register is writing before Attack/Decay/Sustain/Release
ADSR - Wave: Attack/Decay/Sustain/Release are writing before the Wave register

This things if for letting you obtain good hardrestart (some one need accurate write timing to be
achieved).

If you are wondering how to obtain and hard restart that use the test bit, you have two ways:

Use Hard Restart features, setting AD/SR to use into HR, then make the first control regis-
ter with the gate bit released. The second one need to be $09 (test bit + gate on). Use at
least 2 ticks and set write order as ADSR-Wave

Use Hard Restart features, setting AD/SR to use into HR, then make the first and second
control register with the gate bit released. Use at least only one ticks. Then into the fist row
of instrument table, set ADSR as you want for your instrument and the first wave as $09
(test bit + gate on). Set write order as ADSR-Wave. After this you will start the wave you
need for your instrument.

The main part where you create the timbre of the instrument is the big middle table. It has 127
rows of commands and couples of columns for specific aspect of sid sound. Couple of column are
differentiated by having two different colors. You can add a new cell using the Ins key and remove
one using the Canc key. With the right click of the mouse in a column, you open a sub menu for
enter values.

D/N Delay/Number of Repeat (sometimes called D/R)
This is common to all the couple of columns. With the first number you specify how long will
take the delay between two commands to be executed. The second number specifies how
many times the command will be executed in sequences. Example:
e 0]0 the most used: no delay and no repeat (the command is executed into one tick)
e 2|0 Command has a delay of 2 ticks after his execution (and no repeat, so next
command will start after 3 ticks)
e 2|3 Command has a delay of 2 ticks after his execution, but then it is repeated for 3
times. So the next command starts after (2+1)*(3+1)=12 completed ticks.
AD Attack/Decay
Here you can specify the attack/decay to use for the instrument. Values goes from $00 to
$FF and are to be insert in hex.
SR Sustain/Release
Here you can specify the sustain/release to use for the instrument. Values goes from $00
to $FF and are to be insert in hex.
Wave
Here you can specify the wave (control register) to use for the instrument. Values goes
from $00 to $FF and are to be insert in hex.
Frequency
Control the frequency (notes) to put into sid registers. The right-click menu contains four
options:
e Insert absolute note
The table that is opened contains all the 8-octave notes you can use. Them are
hard-coded into the player so you cannot change the frequency for one note, with
the exception that you can choose from 4 kind of tables in Option that differs only
by the middle A4 note: 424, 434, 440, 442Hz.
e Insert relative note
In the table that is opened there are relative values to add or subtract from the

25

e Pulse

note the instruments was activated by the pattern that is using the instrument. It is
always related to notes in the pattern, for example if you use an absolute note of
the case above, this is not the note used for adding or subtracting the value.
Those values are hard-coded into the player and cannot be varied. They varied
from 0 to 31 so about +/- 2,5 octave from the note of the pattern. The value of
Note+0 is to use if you want to maintain the actual note played by the pattern.
Insert relative frequency

In the table that is opened you can choose relative values of frequencies to add or
subtract from current frequencies the sid was used. Value of +/- 0 can be used for
taking the actual frequency the sid is working. This command can be used for cre-
ating vibrato or portamento at the instrument level. The values to add/subtract go
from 0 to 32768 and you can change them using the Tables view icon/menu com-
mand.

Insert absolute frequency

In the table that is opened you can choose fixed values of frequencies to put di-
rectly into sid register. The 0 value is useful if you want to play silent. The values
go from 0 to 32768 and you can change them using the Tables view icon/menu
command.

Control the pulse generation for $41 waveform.
The right-click menu contains two options:

Insert fixed pulse value

With this it is open a sub-table where you can choose the fixed values (from
0..2048 that you can change using the Tables view icon/menu command) that are
to be putted into pulse registers of sid.

Insert relative pulse value

With this it is open a sub-table where you can choose the relative (positive or neg-
ative) value to add/subtract from current value of the pulse registers. Values can
be varied using the Tables view icon/menu command

e Filter Cut-off
Set the filter cut-off frequency.
The right-click menu contains two options:

Insert relative frequency With this it is open a sub-table where you can choose
the relative cut-off frequency to add/subtract from the current value. You can
change the values using the Tables view icon/menu command.

Insert absolute frequency Whit this it is open a sub-table where you can choose
the absolute frequency to put into sid registers. Values can be varied using the
Tables view icon/menu command

e Filter Resonance
Set the filter resonance value.
The right-click menu contains one option:

Insert value With this it is open a sub-table where you can choose:
e Fixed value of resonance to put to sid register

e Value to add to current resonance

e Value to subtract to current resonance

The values go from 0 to 15 and are hard-coded into the player, so they cannot be changed.
e Filter type

Set the filter type to use and the voices where apply filter.

The right-click menu contains one option:

Insert type

In the dialog that it is opened containing checkboxes, you can choose:
e High pass filter

Band pass filter

Low pass filter

Filter active in voice 3

Filter active in voice 2

26

At each right-click in a column different by D/N, the first two option available are:

If the step is defined, the number of repeat can be chosen by right-clicking the last row of
D/N column. You have a fixed table with values from 1 to 255 and the inf one. With inf you

e Filter active in voice 1
e Common part

e Set step to here

It takes the position where you right-click the one for repeating the sequence of
commands where the last is executed. You will see that all the commands that re-

peats are now colored.
e Set no step

It remove the position for repeating sequence, and so when the last command is
executed, no one for this column will be performed by the player, until the instru-

ment restart by tracker command.

specify that the repeat is forever.

For changing the values you see into sub-menu, you have to open the Table of values for in-

struments.

In this big screen are reported all the used tables for one instrument. Red values are the one

you have used into the instrument definition, the Blacks are the ones not yet used.

B2 JITT64 - Table of values

Tables of values for instruments: 1 Bass Drum (1)

Frequency Tables Misc. Table
Absolute Notes Frequency Absol./Relat. Freq. Relative Freq. Fixed Freq. Values
0 1 2 Z 4 = 5] 7 Add Sub Add Sub Value D| R
CO0|C-1|C-2|C-3|C-4|C-5[C-6|C-7|=~ Mote+0 | Note-O |~ +0 -0 - 0 - 010 |~
C#0|C#1|C22 |C#3|Cad|C#5|C#6 |Cx7 Mote+1 | Note-1 +5 -5 2048 0|1 |5
D-0|D-1|D-2|D-3|D-4|D-5(D-6|D-7 Mote+2 | Mote-2 | _ +10 10 | 4086 3 0|2

D#0|D#1|D#2|D#3|D#4|D#5 D#6|D#7 Mote+3 | Note-3 +15 -15 6144 0|3
E-O|E-1|E-2|E-3|E4|E5|[E6B|E7V Mote+4 | Mote-4 | +20 200 8lsz | 0|4
F-O[F-1|F-2|F3|F4|F5|F6|F-7|_ | [Mote+5| MNote-5 +25 -25 10240 0|5
F#0|F#1|F#2|F#3|F#4 |F#5|F#6|F#7| | |Mote+6 | Note-6 +30 -30 12288 0|6
G-0|G-1|G-2|G-3|G-4|G-5[G6|G-7 Mote+7 | Mote-7 +35 -35 14336 0|7
G#0|G#]|G#2|G#3|G#4|G#5|G#6|G#7 Mote+8 | Note-8 +40 -40 16384 0|8
A-D AL | A2 | A3 | A4 |AS[AB | AT Mote+9 | Note-9 +45 -45 18432 0|9
A0 Al [A#2 A3 |A#4 A#5|A%E AT MNote+10 Note-10 +50 -50 20480 0|10} |
B-0|B-1|B-2 |B-3|B-4 |B-5[B-6 |B-7 |~| [Note+1l|Note-11 |~ +55 55 |- 22528 |= 0 11|~
Pulse Tables Filter Cut-off Frequency Tables Filter Resonance Tables

Relative Pulse Fixed Pulse Relative Freq. Fixed Freq. Resonance value

Add Sub Value Add Sub Walue Fixed Add Sub

+0 -0 - 0 - +0 -0 - 0 o 0 +0 -0 -

+160 160 = 1024 = +128 128 |= 1536 = 1 +1 -1

+10 10 58 B +64 -64 1024 B 2 +2 -2

+15 -15 102 +15 -15 63 3 +3 -3

+20 -20 136 +20 -20 84 4 +4 -4 =

+25 -25 170 +25 -25 105 5 +5 -5

+30 -30 204 +30 -30 1285 5] +6 -6

+35 -35 238 +35 -35 147 7 +7 -7

+40 -40 272 +40 -40 158 g +8 2 I

+45 -45 306 +45 -45 189 9 +9 -9

+50 -50 340 +50 -50 210 10 +10 10 ||

+55 55 |+ 374 - +55 55 |- 231 - 11 +11 11 |-

[[] Show hex number

27

Filling this tables of values are the most tedious work for you (and as these tables are not
shared, this operation is to be done for each instrument), but this is what we have to pay for hav-
ing freedom in implementing one instrument.

The tables are pre-filled with some custom values and in future | will add some configuration
wizard that will help you filling it. Else, | will make that you can vary one value when you are into in-
strument main table, without need to open this screen.

Take present that each of this table can be loaded/saved in/from file, so you can create one ta-
ble library to use.

At this point | like to show some example of instrument implementation, so you can figure better
how this task look like in JITT64.

SEA effect

A simple sea effect. It not used any hard-restart of note: only AD/SR and fixed wave/frequency
are used. The sea is obtained from the use of noise with very long Attack/Decay without a
Sustain level left in volume.

Instrument 15 Name: [Sea

Note: [Sea effect (indipendent from note)

[1 HardRestart On/Off [] Gate Off Write Order
Attack/Decay HR B N. Ticks ® Wave - ADSR

Sustain/Release HR CtrlHR) ADSR - Wave

AD DN SR D/N Wave D/M Freq. D/ Pulse D/M Filt. F. D/ Filt. R. D/MN | Filt. Type| DN
1 cC][] 00 Q)0 81 (][] C-6 0]0 |STEP MO |REP INF|STEP MO |REP INF|STEF NQ |REP IMF|STEP MO |REP INF
STEP MO REP INF| STEP MO |REP INF| STEP WO |REP INF STEF MO |REP INF

3]

Emil's String

This is an example of a String instrument from Emil music. First of all it use a sort of arpeggio for
giving more tones to the voice, else it gives a big “vibrato” to the pulse of rectangular waveform.
Even if gate of note is released, the slow release time is compensated by an hardrestart of note
with only one tick of delay.

Instrument QE Name: |Strinq

Note: [Dependent from given note [Emil] (#3-24)

HardRestart On/Off [] Gate Off Write Order
00 | Attack/Decay HR 15 N. Ticks '® Wave - ADSR
Se | Sustain/Release HR (08 | (08 Cctrl HR ' ADSR - Wave

AD D/N S/R DM Wave DM Freq. DN Pulse DN Filt, F. DN Filt, R. D/M | Filt. Type| DJ/N

1 00 0j0 e][] 41 2]0 | Note+0 | 1|0 1024 0]0 |STEP MO |REP INF|STEP MO |REP INF| STEP MO |REP INF
2 |STEP MQ|REP INF|STEP NO |REP INF 40 0|0 | MNote+5| 1|0 +54 0]2

£l STEP MO REP INF| Note+8 | 1|0 +64 0]25

4 Note+12| 1|0 -64 0|25

5 STEF 1 |REP INF| STEF 3 |REP INF

28

Oriental flute

This is an oriental flute with an high pitch at beginning and a incremental vibrato in the main part.
It needs an hard-restart for a best note starting.

Instrument E

Mame: [Oriental Flute

Mote: [Depend from given note (best as for octave 4)

HardRestart On/Off

0f | Attack/Decay HR

[] Gate Off

ZE M. Ticks ® Wave - ADSR
66 | Sustain/Release HR (10 | |01 CtrlHR) ADSR - Wave

Write Order

AD

DN S/R

DM Wave DN

Freg. Pulse

of (o] [#] 66

@ (00 |~ o [un |4 | |p [

[][8] 11 0Jo

Mote+3
MNote+2
Note+1
Mote+0
+2
+4
+6
+3
+10
-12
-14
-16
-18
-20
+22
+24
+26
+28
+30
-32
-34
-36
-38
-40
+42
+44
+46
+48
+50
-52
-54
-56

D/M Filt, F. DN Filt. R, D/MN | Filt. Type| DN

Bass Drum

A bass drum with fixed notes and lot use of noise waveform

Instrument EE

Name: [Bass Drum (3)

Note: [Fixed note, no filter

[1HardRestart On/Off
.| Attack/Decay HR

[] Gate Off

N. Ticks ® Wave - ADSR
| Sustain/ReleaseHR | CtrlHR (JADSR - Wave

Write Order

AD

5/R

/M

Freq. DiN

[0

C-0 0[0

0|0

B-4 o]0

0|0

G#3 | 0|0

0|0

F#3

410

0Jo

29

Bass drum

Another bass drum that use more low pitch notes and less noise
Instrument EE Mame: [Bass Drum (2) |

Note: [Fixed note, no filter

[l HardRestart On/Off [] Gate Off Write Order
| AttackiDecay HR N. Ticks ® Wave - ADSR
| sustain/Release HR | | CtrlHR ©J ADSR - Wave

AD DN SR D/N | wave | o/N | Freq. | om | Pulse | o | Fit.F | om | Filt R | D/ [Filt Type| Dy
0]0 - 0[0

Filtered bass drum
A filtered bass drum that depends from pattern note in all unless the fixed drum effect. There is
a “portamento” onto the pulse of rectangular waveform and the filter dynamically changes the cut
off frequency.

Instrument EE Name: [Bass Drum (1)

Note: [Fot notes of octave #2-3 (use filter in voice 3)

[] HardRestart On/Off [] Gate Off Write Order

| Attack/Decay HR N. Ticks ® Wave - ADSR
|| Sustain/Release HR = | | CtrlHR) ADSR - Wave

AJD DN S/R Dfm Wave DM Freq. DN Pulse Dfm Filt. F. DM Filt. R. D/M | Filt. Type| DO/N
0]0 | MNote+O | OJ0 14
0|0 C#6][]
0|0 MNote+0 o]0

Matt Gray's bass

A bass from Matt Gray music. There is a vibrato in pulse width.

Instrument EE Name: [Bass |

Note: [Dependent from given note [Matt Grey] (1)

[] HardRestart On/Off [] Gate Off Write Order
| Attack/Decay HR N. Ticks @ Wave - ADSR
| Sustain/ReleaseHR | CtrlHR () ADSR - Wave

AD DiN 5/R DM ‘Wave DN Freg, DiN Pulse DM Filt, F. DN Filt, R, D/N | Filt, Typel
41 MNote+0

30

Dane’'s lead

An example of Dane's short lead sound. It uses hardrestart of note and a “portamento” in pulse

Instrument 45

Name:

|Lead

Note: |Dependent from note [Dane] (#3)

HardRestart OnfOff

cf | Attack/Decay HR

[] Gate Off

Write Order

25 N. Ticks ' Wave - ADSR
00 | Sustain/Release HR (40 | |09 Ctrl HR @ ADSR - Wave

AJD DN SR DN Wave D/N Freg. DN Pulse DN Filt. F. D/ Filt. R. DM | Filt. Type| DN
1 [4]] [4] 39 [#][4] 21 0]0 | Mote+l ajo 1136 Q|0 |STEP MQ|REP INF|STEP NQ REP INF|STEP NO |REP INF
2 |STEP MO |REP INF| STEF NO |[REP INF 41 [=1[8] Mote+0 0Jo +112 0]25
Zl 40 0|0 |STEP NO|REP INF|STEP NQ |REP INF
4 STEP NO REP INF

Dane’'s lead

Another example of Dane's short lead sound. It uses hardrestart of note and a “vibrato” in pulse

Instrument EE

Name:

|Lead

Note: [Dependent from note [Dane] (#3-z4)

HardRestart On/Off

cf | Attack/Decay HR

[] Gate Off

Write Order

2 N. Ticks wave - ADSR
00 | Sustain/Release HR (40 | |09 Ctrl HR ® ADSR - Wave

AD D/ 5/R DN Wave D/N Freg. DN Pulse DM Filt. F. D/ Filt. R. DM | Filt. Type| DN
1 02 (4] [#] 8b 0|0 21 0]0 | Mote+l [#][4] 1136 0]0 |STEP MO |REP INF|STEP NO REP INF| STEP NG [REP INF
2 |STEP MO |REF INF|STEP NO |REF INF 41 40|10 | Note40 [#][e] +112 0]21
Zl 40 0|0 |STEP MO |REP INF| -112 0]21
4 STEP NO REP INF STEP NO REP INF
Matt Gray's snare drum
An example of Matt Gray's snare drum. It uses fixed notes and noise waveform.

Instrument EE Name: [Snare Drum 1 |
Note: [Indipendent from given note [Matt Grey]

[] HardRestart On/Off [] Gate Off Write Order

Attack/Decay HR F N Ticks ® wave - ADSR
Sustain/Release HR CtrlHR) ADSR - Wave
AD D/M 5/R D/N Wave D/ Freq. D/N Pulse D/N Filt. F. D/N | Filt, R D/MN | Filt. Type| DIN

1 00 (o] [¢] el [o][e] g1 1]0 D-4 [][¢] 1920 0]0 |STEP MO |REP INF|STEP NO REP IMF|STEF MO |REP INF
2 |STEP MO REP INF|STEP NC |REP INF 11 o] 4] F#5 Q|0 |STEP NQ REP INF
3 41 3|0 C#4 0[0
4 80 0|0 A3 0[0
5 STEP MO REP INF~ F#5 [#][4]
6 E-4 0[0
7 B-4 0[0
8 C-4 0|0
9 B-4 1[0
10 C-4 [#][¢]
11 B-4 0[0
12 STEP MO |REP IMF

31

Matt Gray's snare drum

Another example of Matt Gray's snare drum. It uses fixed notes and it is less hard of the
previous.

Instrument EE Mame: [Snare Drum 2
Note: [Indipendent from given note [Matt Grey]
[]HardRestart On/Off [] Gate Off Write Order
Attack/Decay HR H N. Ticks ® Wave - ADSR
Sustain/Release HR CtrlHR) ADSR - Wave
AD DiMN SR DM Wave DN Freg. DiMN Pulse DM Filt, F. DN Filt. R, DM | Filt. Type| DN

1 0o [#][¢] ClE] 0jo 11 0Jo A3 [#][¢] 1920 0]0 |STEP NO |REP INF|STEP NQ |REP INF|STEP NO |REP INF
2 |STEP NO |REP INF|STEP MO |REP INF g1 ajo A7 Q|0 |STEP NQ |REP INF
e 41 00 F-3 0|0
4 40 3|0 G#2 0|0
5 10 0|0 F-2 oo
5] STEFP MO |REP INF| A#l [#][e]
7 STEF MO |REF INF

What you read here is just an introduction about the use of JITT64. As JITT64 is a work in
progress project, you will find that the actual developed version has more improvements in lot of
points.

For example it has a conditional compilation that remove the code that in not used in player, for
saving rastrer time. Else it has the support for MIDI music keyboard for simplifying the use of piano
roll (you can even insert notes in pattern with your MIDI keyboard). Finally there is a Goattracker2
instrument import for let you use even instrument you make for Goattracker2.

For long term, it is planner do add even a digi track to the player, but now it is too early for dis-
cuss about this...

Check the program here: http://sourceforge.net/projectsl/jitt64/

32

http://sourceforge.net/projects/jitt64/

With this other article onto JITT64, | want to go inside it and show many of low level details
about the player. It is better that you read the previous article to have a background about the

tracker, before read this one.

Each player has almost the same structure:

e There is a initialization routine that set up
the player for playing a given tune.
There is the play routine that must be
called by an IRQ event each frame (or at
a given slice of scheduled time) for gen-
erating the sound.

In JITT64 the initialization routines will clear all
the used memory locations of the player and
starts to read the first pattern of the track of the
given tune. The later was a choice for reducing
the code that is used inside the IRQ play routine.
The initialization even set the volume to maxi-
mum level.

The play routine starts with a loop of instruc-
tions that are repeated to all the tree voices
(from voice 3 to voice 1). The porpoise of that
instructions is to generate the sid values that are
to be put into the chip register, according to the
tracker rules. In the player there are many vari-
ables called shadow_xx (where xx is one abbre-
viation for the sid registers, like FH, FL, and so
on) that will store the values that are to be
putted into the sid. Only at the end of player cal-
culation those values are putted into the sid chip
(look at the Shadow -> SID block) all in one
passed, so there is not distortion in sound gen-
eration for that voice.

At the end of the main loop, there is the last
block of instructions (Shadow global -> SID
block) that will put the latest 4 registers of the
sid chip that are common to all the 3 voices (like
filter and volume).

The instructions that generate the sound for a
sid voice can be grouped into:

e Play Pattern: decode and execute one
row in pattern

e Play Instrument: play the instrument core

e Play Command: play one command of

the pattern

33

PLAY (IRQ)

Pattern
tem po
ended

Yes

PLAY PATTERN

PLAY INSTRUMENT

v

PLAY COMMAND

v

Shadow -= SID

Shadow global -> SID

mailto:ice00@libero.it

Before analyzing all the blocks in more details
there are some words to say about them:

e Play Pattern is executed only when the tem-
po associated to the pattern is over. So, if
you have a tempo of 7 set into a pattern row,
the routine is executed only after 7 IRQ call-
ing. In fact, this routine has to decode the
notes/instruments/command of one row pat-
tern and activate them.

e Play Instruments and Play Command are ex-
ecuted at each IRQ calling as they have to
generate the instrument timbre and the com-
mands execution flow of the music.

e |t is very important that Play Pattern is exe-
cuted before the others blocks, otherwise
there will be a delay of one frame when a
new note/instrument/command is to be acti-
vated, and this will cause some sound prob-
lems (as some part of the player continues
with the old setting, and some part will start
with the new one).

Even if the proposed structure of IRQ seems very
linear, it suffers of some timing problems and it was
changed to a similar form that is showed in the next
diagram. The problem with the initial used engines is
that the 3 voices are not outputted at the same time
as the Play Pattern, Play Instruments, and Play
Command will take some variables time in execution
and so the 3 voices will starts play with many cycles
of delay (and this can cause some hard-restart of
note problem too). In fact, one of the missing block
in first diagram is Play Hard-Restart that are to be
executed after all the other blocks, as if an hard-
restart of note condition is reached, it had to take
control on sid output over the others commands.

The new structures is formed by:

e Shadow register are outputted the same time
at the start of irq routine: this granted that at
every frames the sid registers are updated
all together

e The execution of player behaviors is after
having updating the sid registers, so there is
no problem in how many cycles this will take

The only side effect of this new structures is that
sound output is always one frame later his calcula-
tion. This could not be a right thinks if you are cod-
ing a demo where sound is to be synchronized with
graphics, but JITT64 is born for write only music, so
this is not a problem.

34

PLAY (IRQ)

A

Shadow global -> SID

Shadow -> SID

3 voices
loop

Pattern
tempo
ended

Yes

PLAY PATTERN

PLAY INSTRUMENT

v

PLAY COMMAND

v

PLAY HARD-RESTART

3 voices
loop

Play Pattern (pl_play_pattern) has to decode the next pattern value of note/instrument/com-
mand/parameter so it is divided into 4 parts. In order to follow it, we need to know that some vari-
ables store the action to give (at a bit level):

BIT actCommand2 activeCommand actCommand3
1 AD Arpeggio Gate SR
2 SR Port. Up
3 Key ON Port. Dn
4 Key OFF Tone-Port.
5 REST Vibrato
6 Filter Type Slide Up
7 Filter Resonance Slide Dn
8 Filter Cut Off

Play Pattern is so divided into this 4 parts:
1. decode note (or command for note)
2. decode instrument to use
3. decode command to perform
4. decode parameters to use for command

The first block is code as this:

;
; play the pattern

pl_play pattern:

lda #0
sta actCommand?2, x ; clear actual command 2
lda pattTempo,x ; restore tempo with saved one

sta pattDelay,x

inc pattIndex, x ; increment pattern index
1dy pattIndex, x ; read index

TBLR pattPointl ; read the value of note
cmp #PAT_END ; end of pattern reached ?

beq nextPattInTrack

cmp #PAT_NULL ; null value ?
beq executeB2

cmp #PAT KON ; key on ?
bne testKOff

lda #4

sta actCommand?, x ; put key on command

jmp executeB2 ; execute byte 2
testKOff:

cmp #PAT_KOFF ; key off ?

bne testRest

lda #8

sta actCommand2,x ; put key off command

jmp executeB2 ; execute byte 2
testRest:

cmp #PAT_REST
bne isNote

lda #510

35

sta actCommand?2, x
jmp executeB2

isNote:
clc
adc trackTransp,x
sta actNote,x
tay
lda frequencylo,y
sta shadow_FL,x

lda frequencyHi,y
sta shadow_FH,x

lda #0
sta activeCommand, x
jmp executeB2

exitPP:
rts

nextPattInTrack:
jsr pl_read track

lda stopTrack,x ; 1f no more track, exit
bne exitPP

jmp pl play pattern

You can so see that it is test for:
Pattern end

Pattern null

Key on

Key off

Rest

. Note

and then take the appropriate action.

S

The second block is very tiny:

executeB2:
1ldy pattIndex,x
TBLR pattPoint2
beq executeB3

jsr pl new instr

It just initialize instrument, if instrument is used.
In block 3, commands are decoded and if needed parameters are decoded too.

executeB3:
1ldy pattIndex,x
TBLR pattPoint3
sta actCommand,x
;1ldy pattIndex,x
TBLR pattPoint4
sta actParam,x

1dy actCommand, x ;
cpy #CMD_STOP : test
bne chk next0

cmp #0
beq exitPP

eor #SFF

and activeCommand,x
sta activeCommand,x
rts

36

chk_nextO0:
cpy #CMD TEMPO ;
bne chk_nextl

cmp #0
beq setNT
sta pattTempo,x ; store new
sta pattDelay,x
rts
SetNT:
1dy #0
TBLR pattPointl ;
sta pattTempo,x ; for the patter
sta pattDelay,x
rts

chk_nextl:
cpy #CMD AD ;
bne chk _next2

sta cmdADSR, x ;

lda #1 ; set for a AD in ne
sta actCommand2,x

rts

chk next2:
cpy #CMD SR ;
bne chk next3

sta cmdADSR, x ; d SR reg

lda #2 ; set for a SR in next command play routine
sta actCommand2,x

rts

chk_next3:
cpy #CMD VOL ; test for
bne chk next4

sta shadow_VOL ; Store in

hadow volume reg.

chk next4d:
cpy #CMD ARP ;
bne chk next5

sta actParam,x

rol ;
rol

rol

and #503

sta speedArpeggio,x

sta speedRelArp,x

lda actParam,x

1sr

1sr

1sr

and #507

clc

adc actNote,x

sta notelArpeggio,x ;

lda actParam,x
and #S07

37

clc
adc notelArpeggio,x

sta note2Arpeggio,x ; Store second veggio note
lda #501
ora activeCommand, x ; activate a

sta activeCommand,x

lda #0
sta posArpeggio,x
rts

chk_next5:
cpy #CMD PUP ;
bne chk nexté6

sta fregPortUp, x ;
lda #502

ora activeCommand, x ;
sta activeCommand,x

rts

chk nexté6:
cpy #CMD_PDN ;
bne chk _next7

sta fregPortDn,x ; dn
lda #504

ora activeCommand, x ;

sta activeCommand,x

rts

chk _next7:
cpy #CMD_TPO ;
bne chk_next8

sta fregTonePort,x ; Store freq. for tone port
lda #508
ora activeCommand, x ; activate

sta activeCommand,x

lda #00 ; Suppose to have a up direction
sta toneDir,x

lda shadow_FH, x ; store tone
sta tone FH,x

lda shadow_FL,x

sta tone FL,x

lda copy FL,x ; store the copy
sta shadow_FL,x

lda copy FH,x

sta shadow_FH, x

cmp tone FH,x ; test the high freqg. of
beq testLow

becec chk_next8

inc toneDir,x ;
bne chk_next8

testLow:
lda copy FL,x ;
cmp tone FL,x
bcc chk next8
inc toneDir,x ; lnver direction

chk_next8:
cpy #CMD VIB ;
bne chk next9

38

pha

and #S0F

sta vibSpeed, x
pla

and #SFO

clc

adc #5510

sta vibFreq,x
inc vibSpeed, x

lda vibSpeed,x
sta vibSpeed2,x
lda #00

sta vibSpeedl,x

lda #510

ora activeCommand, x
sta activeCommand,x
rts

Up

chk_next9:
cpy #CMD SUP
bne chk nextl0

sta slideUp,x

lda #520

ora activeCommand, x
sta activeCommand,x
rts

chk nextl10:
cpy #CMD_ SDN
bne chk nextll

sta slideDn,x

lda #540

ora activeCommand, x
sta activeCommand,x
rts

chk _nextll:
cpy #CMD AFO
bne chk nextl2

sta autoFadeOut,x
sta actualFadeOut,x
rts

chk nextl2:
cpy #CMD FTY
bne chk nextl3

sta cmdFilter,x

lda #520
sta actCommand2,x
rts

chk_nextl3:
cpy #CMD_FRE
bne chk _nextl4

sta cmdFilter,x

lda #540
sta actCommand2,x
rts

> speed

; activate vibrato

test for

; store slide up

> down

down

; activate ide down

uto fade out

39

I mark)

; Set Filter cut off

chk _nextl4:
cpy #CMD FCU ; test for filter cut off
bne chk nextl5

sta cmdFilter,x ; Sstore filter resonance
lda #580
sta actCommand2,x

; Set Gate SR

chk_nextl5:
cpy #CMD_GSR ; test for gate sustain/release
bne exitExecute

sta cmdADSR,x ; store in command SR reg.

lda #1 ; set
sta actCommand3,x

)

or a Gate SR in next command play itine

I}
©

(0]

exitExecute:
rts

As JITT64 can handle up to 255 instruments, the declaration of it into the code is actuating by
using macro code:

; Instrument definition (filled according to actual number of instruments)

.mac ins_instr
.if (NUM_INSTR> ({1}-1))
instr{l}:
.byte INSTR HR_ {1}
.byte INSTR AD {1}
.byte INSTR SR {1}
.byte INSTR CTRLl {1}
.byte INSTR CTRL2 {1}
.byte <instrAD_ {1}
.byte <instrSR_{1}
.byte <instrWave {1}
.byte <instrFreq_ {1}
.byte <instrPulse {1}
.byte <instrFilter {1}
.byte <instrRes {1} >instrRes {1}
.byte <instrType {1} >instrType {1}

, >instrAD {1}
’
’
’
’
’
’
’
.byte <instrFixFreq {1} , >instrFixFreq {1}
’
’
'
’
’
’
’

>instrSR_{1}
>instrWave {1}
>instrFreq {1}
>instrPulse {1}
>instrFilter {1}

.byte <instrRelFreq {1} >instrRelFreq {1}
.byte <instrFixPulse {1} >instrFixPulse {1}
.byte <instrRelPulse {1} >instrRelPulse {1}
.byte <instrRelFilter {1} >instrRelFilter {1}
.byte <instrFixFilter {1} >instrFixFilter {1}
.byte <instrDelay {1} >instrDelay {1}
.byte <instrRepeat {1} >instrRepeat {1}
.endif

.endm

The macro needs the number of instrument to define as a parameter and will declare all the
pointers to the used table of values. It is the packer that will add the tables of instruments at run-
time when you pack the tune. Only the max number of instrument used (NUM_INSTR) is passed
by the packer, so there is conditional code that test it.

When a new instrument is used, those values are copied to many variables:

instrPtrAD L: .byte $00 , (low) pointer to instrument table AD
instrPtrAD H: .byte $00 , (high) pointer to instrument table AD

40

instrPtrSR_L: .byte $00 , (low) pointer to instrument table SR

instrPtrSR_H: .byte $00 , (high) pointer to instrument table SR
instrPtrWave L: .byte $00 , (low) pointer to instrument table Wave
instrPtrWave H: .byte $00 , (high) pointer to instrument table Wave
instrPtrFreq L: .byte $00 , (low) pointer to instrument table Freq
instrPtrFreq H: .byte $00 , (high) pointer to instrument table Freqg
instrPtrPulse L: .byte $00 , (low) pointer to instrument table Pulse
instrPtrPulse H: .byte $00 , (high) pointer to instrument table Pulse

instrPtrFilter L: .byte $00 , (low) pointer to instrument table Filter
instrPtrFilter H: .byte $00 , (high) pointer to instrument table Filter

instrPtrRes L: .byte $00 ; (low) pointer to instrument table Res
instrPtrRes H: .byte $00 , (high) pointer to instrument table Res
instrPtrType L: .byte $00 , (low) pointer to instrument table Type
instrPtrType H: .byte $00 , (high) pointer to instrument table Type

instrPtrFixFreq L: .byte $00 , (low) pointer to instrument table Fix Freq
instrPtrFixFreq H: .byte $00 , (high) pointer to instrument table Fix Freq
instrPtrRelFreq L: .byte $00 , (low) pointer to instrument table Rel Freq

instrPtrRelFreq H: .byte $00 , (high) pointer to instrument table Rel Freqg
instrPtrFixPulse L: .byte $00 ,; (low) pointer to instrument table Fix Pulse
instrPtrFixPulse H: .byte $00 , (high) pointer to instrument table Fix Pulse
instrPtrRelPulse L: .byte $00 , (low) pointer to instrument table Rel Pulse
instrPtrRelPulse H: .byte $00 , (high) pointer to instrument table Rel Pulse

instrPtrRelFilter L: .byte $00 , (low) pointer to instrument table Rel Filter
instrPtrRelFilter H: .byte $00 , (high) pointer to instrument table Rel Filter
instrPtrFixFilter L: .byte $00 , (low) pointer to instrument table Fix Filter
instrPtrFixFilter H: .byte $00 , (high) pointer to instrument table Fix Filter

instrPtrDelay L: .byte $00 , (low) pointer to instrument table Delay
instrPtrDelay H: .byte $00 , (high) pointer to instrument table Delay
instrPtrRepeat L: .byte $00 , (low) pointer to instrument table Repeat
instrPtrRepeat H: .byte $00 , (high) pointer to instrument table Repeat

Having this structured of pointers for instrument tables, a new macro is used when it is needed
to read one value from the table:

; Read the value of passed table
; pointer of voice x with the y

; index
.MAC TBLR
lda {1} L,x
sta ADDR LOW
lda {1} H,x
sta ADDR HIGH
lda (ADDR LOW),y
.ENDM

So, for example:

TBLR instrPtrPulse

it will read one byte from the instrument pulse table at position given by of the y register of the
voice given by x register.

The main block about play instrument in the diagram is mapped to one routine in the player
code: pl_intr_core

; Player instrument core: called
; at each ticks. It executes all
; the tables core

7

pl_intr_ core:

jsr
jsr
jsr

pl_instr core AD
pl_instr_ core_ SR
pl_instr core Wave

41

jsr pl instr core Freq
jsr pl instr core Pulse
jsr pl instr core Filter
jsr pl instr core Res
jsr pl instr core Type
rts

Essentially it calls the execution of all the tables that compose an instrument: AD, SR, Wave,

Frequency, Pulse, Filter, Resonance and Type.

; At k/Decay 1ns

pl instr core AD:
pl instr core AD, 1

pl_instr core_ SR:
pl instr core SR, 2

pl instr core Wave:
pl instr core Wave, 3

pl_instr core Freq:
pl instr core Freq, 4

pl instr core Pulse:
pl instr core Pulse, 5

pl_instr core Filter:
pl instr core Filter, 6

pl instr core Res:
pl instr core Res, 7

pl instr core Type:
pl instr core Type, 8

All this is done by a big macro (pl_instr_core_) that receive two parameters: the kind of table to
use and a number for let implementing conditional code based onto table. Inside it, another macro
(OUTV) is used for output the value according to the actual table:

ro for 1ins

.mac pl_instr core
1ldy actIndex {1},x ;
bne cont IC {1}

TBLR instrPtr{l}
sta dimension {1},x

iny

42

lda
sta
iny
lda
sta

iny
tya
sta

lda
beg

lda

(ADDR_LOW) ,y
allowRepeat {1},x

(ADDR_LOW) ,y
stepPos_{1},x

actIndex {1},x

dimension {1},x
exit IC {1}

(ADDR_LOW) , y

start IC {1}:

OUTvV

{1}, {2}

ecount IC {1}:

iny
lda
tay
TBLR
sta
TBLR
sta

(ADDR_LOW) , y

instrPtrDelay
actDelay {1},x
instrPtrRepeat
actRepeat {1},x

exit IC {1}:

rts

cont IC {1}:

lda
beqg

lda
beg

dec
rts

dimension {1},x
exit IC {1}

actDelay {1},x
contl IC {1}

actbDelay {1},x

contl IC {1}:

lda
beq

TBLR
OUTV

iny
lda
tay
TBLR
sta
dec
rts

actRepeat {1},x
cont2 IC {1}

instrPtr{l}
{1}, {2}
(ADDR_LOW) , y
instrPtrDelay

actbDelay {1},x
actRepeat {1},x

cont2 IC {1}:

lda
cmp
bcs

inc
inc
1ldy
TBLR
ouTv

jmp

actIndex {1},x
dimension {1},x
cont3 IC {1}

actIndex {1},x
actIndex {1},x
actIndex {1},x
instrPtr{l}
{1}, {2}
ecount IC {1}

cont3 IC {1}:

lda
beqg

1ldy
bne

stepPos_ {1},x
exit2 IC {1}

allowRepeat {1},x
contd IC {1}

econt2 IC {1}:

sta
tay

actIndex {1},x

TBLR instrPtr{l}
jmp start IC {1}

read value

save repeat information

read value
save step positio

store actual inde

if table is empty

read values

out value

read delay repeat

read delay from t
store in actual d
read repeat from

store actual repe

exit

if table is empty

read actual delay

n

X

, exit

from table

able
elay
table
at

, exit

if zero go away with repeat

decrement actual
exit

read actual repea
if zero go away Ww.
read values

out value

read delay repeat
read delay from t
store in actual d

decrement actual
exit

test if actual po

increment actual
increment actual

read values
out value

test if there is

test 1if infinite

store stepPos in

read values
and restart the c

43

delay

t value

ith next index in

from table

able
elay
repeat

sition is over dimension

index
index

no repeat

repeat

actual position

ore

contd IC {1}:
lda actNumRepeat {1},x ; test if actual repeat is equal to max nun of repeat
cmp allowRepeat {1},x
beq exit2 IC {1}

inc actNumRepeat {1},x ; increment actual number of repeat
lda stepPos {1},x ; and use a new step position
bne econt2 IC_ {1}

exit2 IC {1}:
rts
.endm

; Out the value to shadow reg.
; according to the actual type of
; action (A=read value from table)

.mac OUTV
par SET {2}

.1f par=1 ; AD
sta shadow_AD,x ; out value

.endif

.if par=2 ; SR
sta shadow_ SR, x ; out value

.endif

.if par=3 ; Wave
beq .skip CTRL ; skip if zero
sta shadow_ CTRL,x

.skip CTRL:

.endif

.1f par=4 ; Freg
sty TEMP ; preserve y index reg
jsr putFreq
1dy TEMP

.endif

.if par=5 ; Pulse
sty TEMP ; preserve y index reg
jsr putPulse
1dy TEMP

.endif

.if par=6 ; Filter Freq
sty TEMP ; preserve y index reg
jsr putFilterFreq
1dy TEMP

.endif

.if par=7 ; Filter Resonance
sty TEMP ; preserve y index reg
jsr putFilterRes
1dy TEMP

.endif

.if par=8 ; Filter Type
sta shadow TYPE,x ; out value

.endif

.endm

Play Command routine is a conditional big test that, if command bits are set, will perform that
command.

7

; Play the command of pattern

7

pl play command:

lda activeCommand,x
and #3501 ; arpeggio command ?
beq skip coml

44

lda
cmp
bne

1ldy
jmp
skipPosl:
becs
1ldy
jmp
skipPosO:
1ldy

putFr:
lda
sta

lda
sta

dec
bpl

lda
sta

skip_coml:
lda
and
beqg

1ldy
loopSubPort

lda
clc
adc
sta
bcc
inc

skip com2:
lda
and
beqg

1ldy
loopSubPort

lda
sec
sbc
sta
bcs

posArpeggio, x
#1
skipPosl

notelArpeggio, x
putFr

skipPos0

actNote, x
putFr

note2Arpeggio, x

frequencylo,y
shadow FL,x

frequencyHi,y
shadow_FH,x

speedArpeggio,x
skipInc

speedRelArp, x
speedArpeggio, x

posArpeggio, x
posArpeggio,x
#3

skipInc

#0
posArpeggio,x

up

activeCommand, x
#502

skip com2

#PORT MULT
Up:

shadow_FL, x
fregPortUp, x
shadow FL,x

skip_com2
shadow_FH, x

loopSubPortUp

ento dn

activeCommand, x
#504
skip com3

#PORT MULT
Dn:

shadow_FL, x
fregPortDn, x

shadow_FL,x
skip com3

put the right note according

+

use middle note

use last note

put frequency

o load spneed
reload speed

add port. up value

fix to high

; portamento dn command ?

45

to position

skip

dec

bne

com3:

lda
and
beqg

lda
bne

1ldy

shadow_FH, x

loopSubPortDn

activeCommand, x
#508
skip_com4

toneDir, x
negbPort

#PORT MULT

loopAddPort:

lda
clc
adc
sta
bcc
inc

skipTPU:

dey
bne

lda
cmp
beqg
bcc
bcs

testLUP:

lda
cmp
bcc

stopTone:

lda
sta
lda
sta

lda
and
sta
jmp

negPort:

1ldy

shadow_FL, x

freqgTonePort, x
shadow_FL,x
skipTPU
shadow_FH, x

loopAddPort

shadow_FH, x
tone FH,x
testLUP
skip_com4
stopTone

shadow_FL, x
tone FL,x
skip_ com4

tone FH,x
shadow FH,x
tone_ FL,x
shadow_FL,x

activeCommand, x
#5177
activeCommand, x
skip_com4

#PORT MULT

loopSubPort:

lda
sec
sbc
sta
bcs
dec

skipTPD:

dey
bne

lda
cmp
beqg
bcs
bcc

testLDN:

lda

shadow FL, x

freqTonePort, x
shadow_FL,x
skipTPD
shadow_FH, x

loopSubPort

shadow_FH, x
tone FH,x
testLDN
skip_com4
stopTone

shadow_FL, x
tone FL,x
skip_com4
stopTone

read portamento direction

value is *PORT MULT
read actual low freq.

add the ton

o
e~
o]
0
I
ot

req. value

fix high of frequency

test i1f high freq is reached

test if low freq is reached

copy final value to freq.

Stop

tone portamento command

4
v
)

~
o
)

sub the tone port freq. val

fix high of frequenc

test i1f high freq is reached

test if low freq is reached

46

skip com4:

lda
and
beq

lda
beqg

dec
jmp

testSp2:
lda
beq

dec
jmp

invDir:
lda
sta
sta
lda
eor
sta

goDir:
lda
bne

lda
clc
adc
sta
bcc
inc
skipVvU:

jmp

invertDir:

lda
sec
sbc
sta
bcs
dec
skipVD:

activeCommand, x

#510
skip comb

vibSpeedl, x
testSp2

vibSpeedl, x
goDir

vibSpeed?2, x
invDir

vibSpeed?2, x
goDir

vibSpeed, x
vibSpeedl,x
vibSpeed2,x
vibDir, x
#501
vibDir,x

vibDir, x
invertDir

shadow_FL, x

vibFreq, x
shadow_FL,x
skipVu
shadow_FH, x

skip_ comb

shadow_FL, x

vibFreq, x
shadow_FL,x
skipVD
shadow_FH, x

skip comb5:
lda
and
beg

lda
clc
adc
sta
bce
inc

skip_com6:
lda
and
beq

lda
sec

activeCommand, x

#520
skip com6

shadow_PL, x
slideUp, x
shadow_PL,x

skip_ comé
shadow_PH, x

down

activeCommand, x

#540
skip_com7

shadow_PL, x

vibrato command ?

test first speed value

decrement speed counter

test second speed value

decrement speed counter

reload speed

invert direction

read actual low freq.

add vibrato value

£ £

fix for high freq.

read actual low freq.

sub vibrato value

fix for high freq.

slide up command ?

read pulse low

add slide up value

,
[
b

to high

slide dn command ?

47

skip_com7:

slideDn, x
shadow_PL,x
skip_com7
shadow_PH, x

; do special command

lda
beq

lda
beq

dec
bne

dec
lda
sta
bne

exitAFO:
sta

autoFadeOut, x

oneShotCmd

shadow_VOL
exitAFO

actualFadeOut, x

oneShotCmd

shadow_VOL

autoFadeOut, x
actualFadeOut, x

oneShotCmd

autoFadeOut, x

; do one shot command

oneShotCmd:

actCommand?, x

skip 3coml
#1

skip_2coml

cmdADSR, x
shadow_AD, x

actCommand?,x

#5F7

actCommand?, x

;

; SR command

’

skip 2coml:
1lda
and
beqg

lda
sta
lda
sta

actCommand?, x

#2

skip_2com2

cmdADSR, x
shadow_SR, x
#500

actCommand?2, x

’

; Key on command

7

skip_2com2:
lda
and
beqg

lda
ora
sta

actCommand?,x

#4
skip_2com3

shadow_CTRL, x

#s01

shadow_CTRL,x

7

; Key off command

7

;

;

7

;

;

sub slide dn value

fix to high

read

check

auto fade out

actual volume

dec actual fade out counter

decrement volume
read auto fade out
set actual fade out

clear

exit
AD ?

Store

store

clear

auto fade out

if not more commands

AD

command flag

SR

command flag

; put key on

48

skip 2com3:
lda
and
beq

actCommand?, x
#8
skip_ 2comé

shadow CTRL, x
#SFE
shadow_CTRL,x

skip 2com4:
1lda
and
beqg

lda
sta
sta

actCommand?2, x
#3510
skip 2comb

#0
shadow_FL, x
shadow_FH,x

skip 2com5:
lda actCommand?2,x
and #520
beq skip 2com6
lda cmdFilter,x
sta shadow TYPE
lda #500
sta actCommand?2, x
; Filter resonance
skip 2comb6:
lda actCommand?2,x
and #3540
beq skip 2com7
lda cmdFilter,x
sta shadow_RES
1lda #500
sta actCommand?2, x

o+
o

M
[

skip_2com7:
1da
and
beqg

lda
sta

lda
sta

actCommand?,x
#580
skip_3coml

cmdFilter, x
shadow_FCH

#3500
actCommand?2, x

; SR command

skip_ 3coml:
lda
and
beq

lda

actCommand3, x
#1
skip_3com2

cmdADSR, x

\

s
c
ot
o~
o

<
[¢)
My
My

; put frequency to zero

; clear command flag

; clear command flag

49

sta shadow_SR,x ; store SR

skip 3com2:
rts

Play hard restart is the last block in diagram and is for making the hard restart of note if this
event is triggered.

7

; play a HR if this is the case

pl play hr:
lda hrActive,x ; HR activated into this row?
beq skipPlayer

lda instr_ HR,x ; read HR of instrument

and #S$0F

sta TEMP ; 1solate the ticks

inc TEMP ; we check for minor of this

1dy pattbelay,x ; read actual remaining delay ticks
beq latest ; last ticks?

cpy TEMP

bpl exitPHR ; no time for HR

lda hrActive,x
bmi fullHR

lda shadow CTRL,x ; put gate off
and #SFE
sta shadow CTRL,x
rts
fullHR: ; activate the full HR

lda instr AD,x
sta shadow AD,x
lda instr SR,x
sta shadow SR,x
lda instr_ CTRL1,x
sta shadow_ CTRL,x

rts
latest: ; latest cicle before new note
lda instr HR,x
and #580 ; HR?
beq exitPHR ; no, gate off, so skip

lda instr CTRL2,x
sta shadow CTRL, x ; put control 2 to did

exitPHR:
rts

Even if the actual code of JITT64 is changed as it has conditional compilation in it for removing
unused code of your tune, the structure is not changed, so you will have no difficult to look at the
JITT64 ver 1.03 source code.

As you have seen, the use of so freedom into instrument implementation have make the code to
manage it very complex, and so raster time usage can be high. However, due to the high use of
macro into the code, if | find some better way to make the same operation (maybe using undocu-
mented instructions), then | just need to modify a macro for having all the code ready for being
more quick in execution.

50

QB i 13 end

51

