

Kick Assembler V2.24

 Reference Manual

 By Mads Nielsen

 2

Index
1 Introduction..3
2 Getting started..4

2.1 Running the assembler...4
2.2 An example interrupt ...4

3 Basic Assembler stuff ..6
3.1 6510 Commands ..6
3.2 Addressing modes / argument types ..8
3.3 Number formats ...8
3.4 Labels and multi labels ..8
3.5 Memory and data directives...9
3.6 The import directive ..11
3.7 Comments ..12
3.8 User console output (.print and .error)...12

4 Expressions ..13
4.1 Variables and constants ...13
4.2 Scoping ..14
4.3 Numeric values ..15
4.4 Parentheses ..16
4.5 String values ..16
4.6 The math library ..17
4.7 List values ..18
4.8 Hashtable values ..19
4.9 Vector and Matrix values...20

5 User defined structures ..21
6 Branching and looping...22

6.1 Boolean values...22
6.2 .if ..22
6.3 .for..23

7 Macros, Functions and Pseudo commands..25
7.1 Macros ...25
7.2 Functions..26
7.3 Pseudo commands ...27

8 Special features ..29
8.1 Creating a basic upstart program ...29
8.2 Opcode constants ...29
8.3 Colour constants ..30
8.4 Import of binary files ...30
8.5 Import of PSID files...32
8.6 Converting Graphics ..34
8.7 Making 3D Calculations ..35

9 Testing ...39
10 Command line options...40

 3

1 Introduction
This is the manual for Kick Assembler. Kick Assembler is the combination of an assembler for
doing 6510 machine code and a high level script language. With the assembler functionalities you
can write your assembler programs, and with the script language you can write programs that
generate data to use in the assembler programs. This could be data such as sine waves, coordinates
for a vector object, or graphic converters etc. In addition you can combine assembler commands
and scripting commands which is a really powerful combination. A little example: Where other
assemblers can do simple unrolling of loops, Kick Assembler can base the unrolling of a loop on a
list generated by the script language and select the content of the loop body based on the content of
the list. This makes it more flexible when generating speed code.

I would like to thank some people who made it easier to do this assembler. Thanks to Martin
‘Cruzer’ Kristensen for proofreading and testing the assembler, John ‘Graham’ Selck for his page
about the opcodes at www.oxyron.de, Gerwin Klein for doing JFlex (the lexical analyser used for
this assembler) and to Scott Hudson, Frank Flannery and C. Scott Ananian for doing CUP (The
parser generator).

I would like to hear from people using this assembler so don’t hesitate to write your comments to
kickassembler@no.spam.theweb.dk (<- Remove no.spam. for real address). After the publication
of the beta-release on CSDB, a lot of cool feedback has found its way to my mailbox. Thanks guys!
Your feedback is greatly appreciated!

I wish you happy coding..

 4

2 Getting started
This chapter is written to quickly get you started using Kick Assembler. The details of the
assembler’s functionalities will be presented later.

2.1 Running the assembler

Kick Assembler is written in java and distributed in the executable jar file ‘kickass.jar’. To run
Kick Assembler, you have to have Java5.0 or better installed on you machine. This can be
downloaded for free from Sun’s website (http://java.com/en/download/index.jsp). To assemble the
file myCode.asm simply write:

java –jar kickass.jar myCode.asm

2.2 An example interrupt

Below is a little sample program to quickly get you started using Kick Assembler. It sets up an
interrupt which play some music. It shows you how to use non-standard features as the .pc
directive, comments and how to use macros and include external files. This should be enough to get
you (kick) started.

 5

//--

//--

// Simple IRQ

//--

//--

.pc = $4000 "Main Program"

 lda #$00

 sta $d020

 sta $d021

 lda #$00

 jsr $1000 // init music

 sei

 lda #<irq1

 sta $0314

 lda #>irq1

 sta $0315

 asl $d019

 lda #$7b

 sta $dc0d

 lda #$81

 sta $d01a

 lda #$1b

 sta $d011

 lda #$80

 sta $d012

 cli

this: jmp this

//--

irq1:

 asl $d019

 :SetBorderColor(2)

 jsr $1003 // play music

 :SetBorderColor(0)

 pla

 tay

 pla

 tax

 pla

 rti

//--

.pc=$1000 "Music"

.import binary "ode to 64.bin"

//--

// A little macro

.macro SetBorderColor(color) {

 lda #color

 sta $d020

}

 6

3 Basic Assembler stuff
This chapter describes the mnemonics and the basic directives that are not related to the script
language.

3.1 6510 Commands

In Kick Assembler you can write assembler mnemonics the traditional way:

lda #0

sta $d020

sta $d021

However, it ignores format statements such as newline and tabs so you can format your program in
any coding style. If you wish, you can write your entire program in one line:

lda #0 sta $d020 sta $d021

This comes in handy when using the script language. Kick Assembler supports all opcodes, also the
illegal ones. A complete list of commands and their opcodes in the each mode is shown here:

Mnemonic noarg imm zp zpx zpy izx izy abs abx aby ind rel
adc $69 $65 $75 $61 $71 $6d $7d $79

ahx $93 $9f

alr $4b

anc $0b

anc2 $2b

and $29 $25 $35 $21 $31 $2d $3d $39

arr $6b

asl $0a $06 $16 $0e $1e

axs $cb

bcc $90

bcs $b0

beq $f0

bit $24 $34 $2c $3c

bmi $30

bne $d0

bpl $10

brk $00

bvc $50

bvs $70

clc $18

cld $d8

cli $58

clv $b8

cmp $c9 $c5 $d5 $c1 $d1 $cd $dd $d9

cpx $e0 $e4 $ec

cpy $c0 $c4 $cc

dcp $c7 $d7 $c3 $d3 $cf $df $db

dec $c6 $d6 $ce $de

dex $ca

dey $88

eor $49 $45 $55 $41 $51 $4d $5d $59

 7

inc $e6 $f6 $ee $fe

inx $e8

iny $c8

isc $e7 $f7 $e3 $f3 $ef $ff $fb

jmp $4c $6c

jsr $20

las $bb

lax $ab $a7 $b7 $a3 $b3 $af $bf

lda $a9 $a5 $b5 $a1 $b1 $ad $bd $b9

ldx $a2 $a6 $b6 $ae $be

ldy $a0 $a4 $b4 $ac $bc

lsr $4a $46 $56 $4e $5e

nop $ea

ora $09 $05 $15 $01 $11 $0d $1d $19

pha $48

php $08

pla $68

plp $28

rla $27 $37 $23 $33 $2f $3f $3b

rol $2a $26 $36 $2e $3e

ror $6a $66 $76 $6e $7e

rra $67 $77 $63 $73 $6f $7f $7b

rti $40

rts $60

sax $87 $97 $83 $8f

sbc $e9 $e5 $f5 $e1 $f1 $ed $fd $f9

sbc2 $eb

sec $38

sed $f8

sei $78

shx $9e

shy $9c

slo $07 $17 $03 $13 $0f $1f $1b

sre $47 $57 $43 $53 $4f $5f $5b

sta $85 $95 $81 $91 $8d $9d $99

stx $86 $96 $8e

sty $84 $94 $8c

tas $9b

tax $aa

tay $a8

tsx $ba

txa $8a

txs $9a

tya $98

xaa $8b

DTV opcodes are also supported. To use these you have to use the –dtv option at the command line
when running Kick Assembler. The DTV commands are:

Mnemonic noarg imm zp zpx zpy izx izy abs abx aby ind rel
bra $12

sac $32

sir $42

 8

3.2 Addressing modes / argument types

Kick Assembler uses the traditional notation for addressing modes / argument types:

Mode Example

No argument nop

Immediate lda #$30

Zeropage lda $30

Zeropage,x lda $30,x

Zeropage,y ldx $30,y

Indirect zeropage,x lda ($30,x)

Indirect zeropage,y lda ($30),y

Abolute lda $1000

Absolute,x lda $1000,x

Absolute,y lda $1000,y

Indirect jmp ($1000)

Relative to program counter bne loop

An argument is converted to its zeropage mode if possible. This means that lda $0030 will generate
an lda command in its zeropage mode.

3.3 Number formats

Kick Assembler supports the standard number formats:

Prefix Format Example

 Decimal lda #42

$ Hexadecimal lda #$2a

% Binary lda #%101010

3.4 Labels and multi labels

Label declarations in Kick Assembler ends with ‘:’ and have no postfix when referred to, as shown
in the following program:

loop: inc $d020

 inc $d021

 jmp loop

Kick Assembler also supports multi labels which are labels that can be declared more than once.
These are useful to prevent name conflicts between labels. A multi label starts with a ‘!’ and when
your reference it you have to end with a ‘+’ to refer to the next multi label or ‘-‘ to refer to the
previous multi label:

 ldx #100

!loop: inc $d020

 dex

 bne !loop- // Jumps to the last instance of !loop

 ldx #100

 9

!loop: inc $d021

 dex

 bne !loop- // Jumps to the last instance of !loop

or

 ldx #10

!loop:

 jmp !+ // Jumps over the two next nops to the ! label

 nop

 nop

!: jmp !+ // Jumps over the two next nops to the ! label

 nop

 nop

!:

 dex

 bne !loop- // Jumps to the last !loop label

Another way to avoid conflicting variables is to use user defined scopes which is explained in the
Scopes section of the Expressions chapter.

A ‘*’ returns the value of the current memory location so instead of using labels you can write your
jumps like this:

With ‘*’ reference: With label:
jmp *

this: jmp this

inc $d020

inc $d021

jmp *-6

!loop: inc $d020

 inc $d021

 jmp !loop-

3.5 Memory and data directives

 The .pc directive is used to set the program counter. A program should always start with a .pc
directive to tell the assembler where to put the program. Here are some examples of use:

.pc = $1000 "Program"

 ldx #10

!loop: dex

 bne !loop-

 rts

.pc = $4000 "Data"

 .byte 1,0,2,0,3,0,4,0

.pc = $5000 "More data"

 .text "Hello"

The last argument is optional and is used to name the memory block created by the directive. When
using the ‘-showmem’ option when running the compiler a memory map will be generated which

 10

display the memory usages and the name of the block. The map of the above program looks like
this:

Memory Map

$1000-$1005 Program

$4000-$4007 Data

$5000-$5004 More data

By using the virtual option on the .pc directive you can declare a memory block that aren’t saved in
the resulting file.

.pc = $0400 "Data Tables 1" virtual

table1: .fill $100,0

table2: .fill $100,0

.pc = $0400 "Data Tables 2" virtual

table3: .fill $150,0

table4: .fill $100,0

.pc = $1000 "Program"

 ldx #0

 lda table1,x

 …

Note that virtual memory blocks can overlap other memory blocks. They are marked with a star in
the memory map.

Memory Map

*$0400-$05ff Data Tables 1

*$0400-$064f Data Tables 2

$1000-$1005 Program

Since virtual memory blocks aren’t saved, the above example will save the memory from $1000 to
$1005.

With the .align directive you can .align the program counter to a given interval. This is useful for
optimizing your code since crossing a memory page boundary gives a penalty of one cycle for
memory referring commands. To avoid this, use the .align command to align your tables:

.pc = $1000 "Program"

 ldx #1

 lda data,x

 rts

.pc = $10ff //Bad place for the data

.align $100 //Alignment to the nearest page boundary saves a cycle

data: .byte 1,2,3,4,5,6,7,8

The .byte, .text and .word directives are used to generate byte data, word data (one word= two
bytes) and text data as in standard 6510 assemblers (See previous example).

 11

With the .fill directive you can fill a section of the memory with bytes. It works like a loop and
automatically sets the variable i to the byte number.

.fill 5, 0 // Generates byte 0,0,0,0,0

.fill 5, i // Generates byte 0,1,2,3,4

.fill 256, 127.5 + 127.5*sin(toRadians(i*360/256)) // Generates a sine curve

In case you want your code placed at position $1000 in the memory but want it assembled like it
was placed at $2000 then you can use the .pseudopc directive:

.pc = $1000 “Program to be relocated in $2000”

.pseudopc $2000 {

loop: inc $d020

 jmp loop // Will produce jmp $2000 instead of jmp $1000

}

Here is an overview of the memory and data directives:

Form Example Description

.pc = <expr> [“name”] .pc = $1000
“Program”

Set the program counter.

.align <expr> .align $100 Aligns the program counter to a given interval.

.byte <expr list> .byte 1,2,3,4 Generates byte data.

.word <expr list> .word 1,2,3,4 Generates word data.

.text <expr> .text “Hello” Generates text data.

.fill <expr>, <expr> .fill 256, 0
.fill 256, i

Generates a number of bytes, given by the first
expression, with the data given by the second
expression. The variable i is set to the byte number
in the second expression.

.pseudopc <expr>
{…}

.pseudopc $2000
{…}

Assembles code as if it was placed at a different
location.

3.6 The import directive

With the import directive you can import external files in your source. You can import source,
binary, c64 and text files:

// Import and assemble the sourcefile ‘standardlibrary.asm’

.import source “StandardLibrary.asm”

// import the bytes from the file ‘music.bin’

.import binary “Music.bin”

// Import the bytes from the c64 file ‘charset.c64’

// (Same as binary but skips the first two address bytes)

.import c64 “charset.c64”

// Import the chars from a text file

// (Converts the bytes as a .text directive would do)

.import text “scroll.txt”

 12

When Kick Assembler searches for a file it first look in the current directory. Afterwards it looks in
the directories supplied by the ‘-libdir’ parameter when running the assembler. This enables you to
create standard libraries for files you use in several different sources. A command line could look
like this:

java –jar kickass.jar myProgram.asm –libdir ..\music –libdir c:\code\stdlib

3.7 Comments

Comments are pieces of the program that are ignored by the assembler. Kick Assembler supports
line comments and block comments known from language such as C++ and Java. When the
assembler sees ‘//’ it ignores the rest of that line. C block comments ignores everything between /*
and */.

/*--

This little program is made to demonstrate comments

--*/

 lda #10

 sta $d020 // This is also a comment

 sta /* Comments can be placed anywhere */ $d021

 rts

Traditional 6510 asm line comments (;) are not supported since the semicolon is used in for-loops
in the script language.

Type Form Description

C line comments // This is also a comment Ignores the rest of the line

C block comments /*
This is a block comment
*/

Ignores everything between /*
and */

3.8 User console output (.print and .error)

With the .print directive you can output text to the user while assembling. Eg:

.print “Hello world”

.var x=2

.print “x=”+2

If you detect an error while assembling, you can use the .error directive to terminate the assembling
and give an error message:

.var width = 45

.if (width>40) .error “width can’t be higher that 40”

 13

4 Expressions
Kick assembler has a build in mechanism for evaluating expressions. An example of an expression
is 25+2*3/x. Expressions can be used in many contexts, for example to calculate the value of a
variable or to define a byte:

 lda #25+2*3/x

 .byte 25+2*3/x

Normal assemblers can only calculate expressions based on numbers, while Kick Assembler can
evaluate expressions based on a many different types like: Numbers, Booleans, Strings, Lists,
Vectors and Matrixes. So if you want to calculate an argument based on the second value in a list
you write.

 Lda #35+myList.get(2)

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

 Lda #35+myVector.getX()

Or perhaps on the basis of the x-coordinate on the third vector in a list:

 Lda #35+myVectorList.get(3).getX()

I think you have got the idea by now. Kick Assembler evaluation mechanism is much like those in
modern programming languages. It has a kind of object oriented approach so calling a function on a

value(/object) executes a function specially connected to the value. Operators like +, -,*, /, ==,

!= etc. are seen as functions and are also specially defined for each type of value.

In the following chapters will be given a detailed description of how to use the value types and
functions in Kick Assembler.

4.1 Variables and constants

Before you can use variables you have to declare them. You do this by a var directive:

.var x=25

 lda #x // Gives lda #25

If you want to change x later on you write:

.eval x=x+10

 lda #x // Gives lda #35

This will increase x by 10. The .eval directive is used to make Kick Assembler evaluate
expressions. In fact the ‘.var’ directive above is just a convenient shorthand of ‘.eval var x =25’
where ‘var’ is subexpression that declares a variable (This will come in handy later when we want
to define variables in for-loops).

 14

Two other shorthands exists: The ++ and the -- operator which automatically calls a referenced
variables with +1 or -1. For example:

.var x = 0

.eval x++ // Gives x=x+1

.eval x-- // Gives x=x-1

Experienced users of modern programming languages will know that assignments returns a value,
so that x = y = z = 25 first assigns 25 to z, which returns 25 that is assigned to y which returns 25

that is assigned to x. Kick Assembler supports this too. Notice that the ++ and -- works as real ++

and –- postfix operators, which means that they returns the original value and not the new (Ex:

.eval x=0 .eval y=x++, will set x to 1 and y to 0)

You can also declare constants:

.const c=1 // Declares the constant c to be 1

.eval const pi=3.1415 // Declares the constant pi using the eval form

.const name = “Camelot” // Constant can assume any value, for example string

A constant can’t be assigned a new value so .eval pi=22 will generate an error. Note that not all
values are immutable, so if you define a constant that points to a list, the content of the list can still
change.

With the enum statement you can define enumerations which are series of constants:

.enum {singleColor, multiColor} // Defines singleColor=0, multiColor=1

.enum {effect1=1,effect2=2,end=$ff} // Assigns values explicit

.enum {up,down,left,right, none=$ff} // you can mix implicit and explicit

 // assignment of values

4.2 Scoping

You can limit the scope of you variables and labels by defining a user defined scope. This is done
by {..}. Everything between the brackets is defined in a local scope and can’t be seen from the
outside.

Function1: {

 .var length = 10

 ldx #0

 lda #0

loop: sta table1,x

 inx

 cpx #length

 bne loop

}

Function2: {

 .var length = 20 // doesn’t collide with the previous ‘length’

 ldx #0

 lda #0

loop: sta table2,x // the label doesn’t collide with the previous ‘loop’

 inx

 15

 cpx #length

 bne loop

}

Scopes can be nested as many times as you wish which is demonstrated by the following program:

.var x = 10

{

 .var x=20

 {

 .print "X in 2nd level scope read from 3rd level scope is " + x

 .var x=30

 .print "X in 3rd level scope is " + x

 }

 .print "X in 2nd level scope is " + x

}

.print "X in first level scope is " + x

The output of this is:

X in 2nd level scope read from 3rd level scope is 20.0

X in 3rd level scope is 30.0

X in 2nd level scope is 20.0

X in first level scope is 10.0

4.3 Numeric values

Numeric values are numbers covering both integers and floats. Standard numerical operators (+,-
,*,/) work as in standard programming languages. You can combine them with each other and they
will obey the standard precedence rules. Here are some examples:

25+3

5+2.5*3-10/2

charmmem + y * $100

In practical use they can look like this:

.var charmem = $0400

 ldx #0

 lda #0

loop: sta charmem + 0*$100,x

 sta charmem + 1*$100,x

 sta charmem + 2*$100,x

 sta charmem + 3*$100,x

 inx

 bne loop

You can also use the bitwise operators to perform and, or, exclusive or and bit shifting operations.

.var x=$12345678

.word x & $00ff, [x>>16] & $00ff // (gives .word $0078, $0034)

Special for 6510 assemblers are the high and low-byte operators (>,<) that are typically used like
this:

 16

 lda #<interupt1

 sta $0314

 lda #>interupt1

 sta $0315

These are also available in Kick Assembler. Here is a list of numeric operators that returns a
numeric value:

Name Operator Examples Description

Unary minus - Inverts the sign of a number

Plus + 10+2 = 12 Adds two numbers

Minus - 10-8=2 Subtracts two numbers

Multiply * 2*3 =6 Multiply two numbers

Divide / 10/2 = 5 Divides two numbers

High byte > >$1020 = $10 Returns the second byte of a number

Low byte < <$1020 = $20 Returns the first byte of a number

Bitshift left << 2<<2 = 8 Shifts the bits by a given number of
spaces to the left.

Bitshift right >> 2>>1=1 Shifts the bits by a given number of
spaces to the right.

Bitwise and & $3f & $0f = $f Performs bitwise and between two
numbers

Bitwise or | $0f | $30 = $3f Performs a bitwise or between two
numbers

Bitwise eor ^ $ff ^ $f0 = $0f Performs a bitwise exclusive or between
two numbers

4.4 Parentheses

Since traditional 6510 assembler notation have already used soft parenthesis to signal an indirect
addressing mode, you will have to use hard parenthesis to specify a sub expression that shall be
evaluated before others.

 lda #2+5*2 // gives lda #12

 lda #[2+5]*2 // gives lda #14

You can nest as many parentheses as you want, so [[[[2+4]]]*3]+25.5 is a legal expression.

4.5 String values

Strings are used to contain text. You can define a string like this:

.var message = “Hello World”

.text message // Gives .text “Hello world”

Every object has a string representation and you can concatenate strings with the + operator. For
example:

 17

.var x=25

.var myString= “X is “ + x // Gives myString = “X is 25”

You can use the .print directive to print a string to the screen while assembling. This is useful in
debugging. Printing x and y can be done like this:

.print “x=”+x

.print “y=”+y

You can also print labels to see which place in the memory they refer to. If you do this, its best to
convert the labelvalue to hexadecimal notation first:

.print “int1=$”+toHexString(int1)

int1: sta regA+1

 stx regX+1

 sty regY+1

 lsr $d019

 // Etc.

Here is a list of functions/operators defined on strings:

Function/Operator Description

+ Appends two strings

size() Returns the number of characters in the string

charAt(n) Returns the character at position n

substring(i1,i2) Returns the substring beginning at i1 and ending at i2 (char at i2 not
included)

4.6 The math library

Kick Assembler’s math library is built upon the Java5.0 math library. This means that nearly every
constant and command in Java’s math library is available in Kick Assembler. Here is a list of
available constants and commands. For further explanation consult the java5.0 documentation at
Suns homepage.

Constant Value

PI 3.141592653589793

E 2.718281828459045

Function Description

abs(x) Returns the absolute (positive) value of x

acos(x) Returns the arc cosine of x

asin(x) Returns the arc sine of x

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the positive x-axis.

 18

Useful when converting to polar coordinates

cbrt(x) Returns the cube root of x

ceil(x) Rounds up to the nearest integer.

cos(r) Returns the cosine of r

cosh(x) Returns the hyperbolic cosine of r

exp(x) Returns ex

expm1(x) Returns ex-1

floor(x) Rounds down to the nearest integer

hypot(a,b) Returns sqrt(x2+y2)

IEEEremainder(x,y) Returns the remainder of the two numbers as described in the IEEE 754
standard.

log(x) Returns the natural logarithm of x

log10(x) Returns the base 10 logarithm of x

log1p(x) Returns log(x+1)

max(x,y) Returns the highest number of x and y

min(x,y) Returns the smallest number of x and y

pow(x,y) Returns xy

random() Returns a random number x where 0 ≤ x < 1

round(x) Rounds x to the nearest integer

signum(x) Returns 1 if x>0, -1 if x<0 and 0 if x=0

sin(r) Returns the sine of r

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(r) Returns the tangent of r

tanh(x) Returns the hyperbolic tangent of x

toDegrees(r) Converts a radian angle to degrees

toRadians(d) Converts a degree angle to radians

mod(a,b) Converts a and b to integers and returns the remainder of a/b

Here are some examples of use.

// Load a with a random number

lda #random()*256

// Generate a sine curve

.fill 256,round(127.5+127.5*sin(toRadians(i*360/256)))

4.7 List values

List values are used to hold a list of other values. To create a list you use the ‘List()’ function. It
takes one argument that tells how many elements it contains. If it is left out, the created list will be
empty. Use the get and set operations to retrieve and set the elements.

.var myList = List(2)

.eval myList.set(0,25)

.eval myList.set(1, “Hello world”)

 .byte myList.get(0) // Will give .byte 25

 .text myList.get(1) // Will give .text “Hello world”

 19

You can determine the number of elements in a list with the size function and the add function adds
more elements.

.var greetingsList = List()

.eval greetingsList.add(”Maniacs of Noise”, ”Oxyron”, “etc.”)

.byte listSize = greetingsList.size() // gives .byte 3

A compact way to fill a list with elements is:

.var greetingsList = List().add(”Maniacs of Noise”, ”Oxyron”, “etc.”)

Here is a list of functions defined on list values:

Functions Description

get(n) Gets the n’th element

set(n,value) Sets the n’th element

add(value1, value2, …) Add elements to the end of the list

size() Returns the size of the list

remove(n) Removes the n’th element

shuffle() Puts the elements of the list in random order

4.8 Hashtable values

Hashtables are tables that maps keys to values. You can define a hashtable with the Hashtable
function. To enter and retrieve values you use the put and get functions, and with the keys function
you can retrieve a list of all keys in the table:

// Define the table

.var ht = Hashtable()

// Enter some values (put(key,value))

.eval ht.put(“ram”, 64)

.eval ht.put(“bits”, 8)

.eval ht.put(1, “Hello”)

.eval ht.put(2, “World”)

.eval ht.put(“directions”, List().add(“Up”,”Down”,”Left”,”Right”))

// Retrieve the values

.print ht.get(1) // Prints Hello

.print ht.get(2) // Prints World

.print “ram = “ + ht.get(“ram”) + “kb” // Prints ram=64kb

// Print all the keys

.var keys = ht.keys()

.for (var i=0; i<keys.size(); i++) {

 .print keys.get(i) // Prints “ram”, “bits”, 1, 2, directions

}

When a value is used as key then it’s the values string representation that’s used. This means that

ht.get(“1.0”) and ht.get(1)gets the same element. If you try to get an element that isn’t
present in table, a null value is returned.

 20

Function Description

put(key,value) Maps ‘key’ to ‘value’. If the key is previously
mapped to a value, the previous mapping is lost.

get(key) Returns the value mapped to ‘key’. A null value
is returned if no value has been mapped to the
key.

keys() Returns a list value of all the keys in the table

4.9 Vector and Matrix values

Kick Assembler also supports vector values and matrix values. You can read about these in the
section “Making 3d Calculations” in the special features chapter.

 21

5 User defined structures
It’s possible to define your own structures. A structure is a collection of variables like for example
a point which consist of an x and a y coordinate:

// Define a point structure

.struct Point {x,y}

// Create a point with x=1 and y=2 and print it

.var p1 = Point(1,2)

.print ”p1.x=” + p1.x

.print ”p1.y=” + p1.y

// Create a point with the default contructor and modify its arguments

.var p2 = Point()

.eval p2.x =3

.eval p2.y =4

You define a structure with the .struct directive. The above structure have the name ‘Point’ and
consist of the variables x and y. To create an instance of the structure, you use its name as a
function. You can either give no arguments to the function or give the init values of the variables.
You can use the values generated by structures as any other variables, ex:

 lda #0

 ldy #p1.y

 sta charset+[p1.x>>3]*height,y

 22

6 Branching and looping
Kick Assembler have control directives which lets you put conditions on when a directive is
executed and how many time it is executed. These are explained in this chapter.

6.1 Boolean values

The conditions for control directives are given by boolean values, which are values that can be true
and false. They are generated and used as in programming languages like Java and C#. The
following are examples of boolean variables:

.var myBoolean1 = true // Set the variable to true

.var myBoolean2 = false // Set the variable to false

.var fourHigherThanFive = 4>5 // Sets fourHigherThanFive = false

.var aEqualsB = a==b // Sets true if a is the same as b

.var xNot10 = x!=10 // Sets true if x doesn’t equals 10

Here is the standard set of operators for generating Booleans:

Name Operator Example Description

Equal == a==b Returns true if a equals b, otherwise false

Not Equal != a!=b Returns true if a doesn’t equal b, otherwise false

Greater > a>b Returns true if a is greater than b, otherwise false

Less < a<b Returns true if a is less than b, otherwise false

Greater than >= a>=b Returns true if a is greater than or equal to b, otherwise false

Less than <= a<=b Returns true if a is less or equal to b, otherwise false.

All the operators are defined for number values, other values have defined a subset of the above.
E.g. You can’t say that one boolean is greater than another, but you can see if they have the same
values:

.var b1 = true==true // Sets b1 to true

.var b2 = true!=[10<20] // Sets b2 to false

Boolean values have a set of operators assigned. These are the following:

Name Operator Example Description

Not ! !a Returns true if a is false, otherwise false

And && a&&b Returns true if a and b are true, otherwise false

Or || A||b Returns true if a or b are true, otherwise false

.var allTrue = 10HigherThan100 && aEqualsB // Is true if the two boolean

 // arguments are true.

6.2 .if

If-directives works like in programming languages. With an .if directive you have the following
directive executed only if a given boolean expression is evaluated to true. Here are some examples:

 23

// Set x to 10 if x is higher that 10

.if (x>10) .eval x=10

// Only show rastertime if the ‘showRasterTime’ boolean is true

.var showRasterTime = false

.if (showRasterTime) inc $d020

jsr PlayMusic

.if (showRasterTime) dec $d020

You can group several statements together with a {…} and have them executed together if the
boolean expression is true:

// If IrqNr is 3 then play the music

.if (irqNr==3) {

 inc $d020

 jsr music+3

 dec $d020

}

By adding an else statement you can have an expression executed if the boolean expression is false:

// Add the x’th entry of a table if x is positive and

// the subtract it if x is negative

.if (x>=0) adc zpXtable+x else sbc zpXtable+abs(x)

// Init an offsettable or print a warning if the table length is exceeded

.if (i<tableLength) {

 lda #0

 sta offset1+i

 sta offset2+i

} else {

 .print “Error!! i is too high!”

}

6.3 .for

With the .for directive you can generate loops as in modern programming languages. The .for
directive takes an init expression list, a boolean expression and an iteration list separated by a
semicolon. The two last arguments and the body are executed as long as the boolean expression
evaluates to true.

// Prints the numbers from 0 to 9

.for(var i=0;i<10;i++) .print “Number ” + i

// Make data for a sine wave

.for(var i=0;i<256;i++) .byte round(127.5+127.5*sin(toRadians(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions
separated by comma:

// Print the numbers from 0 to 9

.var i=0

.for (;i<10;) {

 .print i

 .eval i++

 24

}

// Sum the numbers from 0 to 9 and print the sum at each step

.for(var i=0, var sum=0;i<10;sum=sum+i,i++)

 .print “The sum at step “ + i “ is “ + sum

The for loop is good for generating tables and unrolling loops. You can for example do a classic
‘blitter fill’ routine like this:

.var blitterBuffer=$3000

.var charset=$3800

.for (x=0;x<16;x++) {

 for(var y=0;y<128;y++) {

 if (var y=0) lda blitterBuffer+x*128+y

 else eor blitterBuffer+x*128+y

 sta charset+x*128+y

 }

}

 25

7 Macros, Functions and Pseudo commands
This chapter shows you how to define and use your own macros, pseudo commands and functions.

7.1 Macros

Macros are collections of assembler directives. When called they generate code as if the directives
where placed at the macro call. The following code defines and executes the macro ‘SetColor’:

// Define macro

.macro SetColor(color) {

 lda #color

 sta $d020

}

// Execute macro

:SetColor(1)

The macro can have any number of arguments. Macro calls are encapsulated in a scope so any
variable defined inside a macro can’t be seen from the outside. This means that a series of macro
calls to the same macro doesn’t interfere:

// Execute macro

:ClearScreen($0400,$20) // Since they are encapsulated in a scope

:ClearScreen($4400,$20) // the two resulting loop labels doesn’t

 // interfere

// Define macro

.macro ClearScreen(screen,clearByte) {

 lda #clearByte

 ldx #0

Loop: // The loop label can’t be seen from the outside

 sta screen,x

 sta screen+$100,x

 sta screen+$200,x

 sta screen+$300,x

 inx

 bne Loop

}

Notice that in the above example the macro execution happens before the definition. This is ok
since in the first pass of the code the assembler searches for macros and uses them from the second
pass.

Macros are good for building libraries. In my standard library I have macros for moving and filling
memory, setting up char matrixes, declaring basic upstart programs etc*. They are also good when
doing things like double buffering. Typically you have a routine you want to work on two buffers,
but making it take the buffer as an argument would slow it down. Instead you define the routine in
a macro which takes a buffer as an argument and then call the macro with each buffer. This saves
you the trouble of otherwise maintaining two identical routines only differing by the buffer they
use.

* The library isn’t included in the assembler.

 26

Macros don’t return any values when executed, but they can have side effects so you can use them
a bit like functions by giving them an argument in which they can return a value. But usually you
would use functions instead.

7.2 Functions

You can also define you own functions. Here is an example of a function:

.function area(width,height) {

 .return width*height

}

lda #10+area(4,8)

You can use your own functions like you would use any of the library functions described earlier.
Functions consist of non-byte generating directives like .eval, .for, .var and .if. When the assembler
evaluates the .return directives it returns the value given by the following expression. If no
expression is given, or if no .return directive is reached, a null value is returned. Here are some
more examples of functions:

// Returns if a number is odd or even

.function oddEven(number) {

 .if ([number&1] == 0) .return "even"

 else .return "odd"

}

// Empty function – always returns null
.function emptyFunction() {

}

As macros, functions can have side effects as shown in the following function that returns no result
(null), but modifies its list argument. Also see how the null value can be used as a null-pointer.

// Inserts null in all elements of a list

.function clearList(list) {

 // Return if the list is null

 .if (list==null) .return

 .for(var i=0; i<list.size(); i++) {

 list.set(i,null)

 }

}

With functions you can calculate data for your programs. Instead of using other programming
languages like C or Java you can code your data generators directly in the Assembler. Put your data
in a list and use the list to generate your speed code or your .byte tables. This eases the
development process by making it more integrated.

 27

7.3 Pseudo commands

Pseudo commands is a special kind of macros that takes command arguments, like #20, table,y or
($30),y as arguments just like mnemonics do. With these you can make your own extended
commands. Here is an example of a mov command that moves a byte from one place to another:

.pseudocommand mov src;tar {

 lda src

 sta tar

}

You use the mov command like this:

:mov #10 ; $1000 // Sets $1000 to 10 (lda #10, sta $1000)

:mov source ; target // target = source (lda source, sta target)

:mov source,x ; target,y // (lda source,x , sta target,y)

:mov #20 ; ($30),y // (lda #20, sta ($30),y)

The arguments to a pseudo command are separated by semicolon and you can use any argument
you would give to a mnemonic.

The command arguments are passed to the pseudo command as CmdValues. These are values
which contain an argument type and a number value. You access these by their getter functions.
Here is a table of the functions:

Function Description Example

getType() Returns a type constant (See the table below
for possibilities)

#20 will return
AT_IMMEDIATE

getValue() Returns the value #20 will return 20

The argument type constants are the following:

Constant Example
AT_ABSOLUTE $1000

AT_ABSOLUTEX $1000,x

AT_ABSOLUTEY $1000,y

AT_IMMEDIATE #10

AT_INDIRECT ($1000)

AT_IZEROPAGEX ($10,x)

AT_IZEROPAGEY ($10),y

AT_NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above list. This
is because the assembler automatically detect when these should be used from the corresponding
absolute mode.

You can construct new command arguments with the CmdArgument function. If you want to
construct a new immediate argument with the value 100 you do it like this:

 28

.var myArgument = CmdArgument(AT_IMMEDIATE, 100)

lda myArgument // Gives lda #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a
function that given the first argument will return the next in a 16 bit instruction.

.function _16bit_nextArgument(arg) {

 .if (arg.getType()==AT_IMMEDIATE)

 .return CmdArgument(arg.getType(),>arg.getValue())

 .return CmdArgument(arg.getType(),arg.getValue()+1)

}

We always return an argument of the same type as the original. If it’s an immediate argument we
set the value to be the high byte of the original value, otherwise we just increment it by 1. This will
supply the correct argument for the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and
IMMEDIATE addressing modes. With this we can easily do some 16 bits commands:

.pseudocommand inc16 arg {

 inc arg

 bne over

 inc _16bit_nextArgument(arg)

over:

}

.pseudocommand mov16 src;tar {

 lda src

 sta tar

 lda _16bit_nextArgument(src)

 sta _16bit_nextArgument(tar)

}

.pseudocommand add16 arg1 ; arg2 ; tar {

 .if (tar.getType()==AT_NONE) .eval tar=arg1

 lda arg1

 adc arg2

 sta tar

 lda _16bit_nextArgument(arg1)

 adc _16bit_nextArgument(arg2)

 sta _16bit_nextArgument(tar)

}

You can use these like this:

:inc16 counter

:mov16 #irq1; $0314

:mov16 #startAddress; $30

:add16 $30; #128

:add16 $30; #$1000; $32

Note how the target argument of the add16 command can be left out. When this is the case an
argument with type AT_NONE is passed to the pseudo command and argument 1 is then used as
target.

With the pseudo command directive you can define your own extended instruction libraries which
speed up some of the more trivial tasks of programming.

 29

8 Special features
In the previous chapters we have described general features of Kick Assembler that can be used to
solve a wide area if problems. In this chapter we describe special features that where implemented
to solve specific problems such as importing sid files, or making vector calculations.

8.1 Creating a basic upstart program

To make the assembled machine code run on a C64 or an emulator, it’s useful to include a little
basic program that starts your code (For example: 10 sys 4096). The BasicUpstart macro is
standard macro that helps you to create programs like that. The following program shows how it’s
used:

.pc = $0801 "Basic Upstart"

:BasicUpstart($0810) // 10 sys$0810

.pc =$0810 "Program"

!loop:

 inc $d020

 inc $d021

 jmp !loop-

TIP: Insert at basic upstart program in the start of your programs and use the –execute option to
start Vice. This will automatically load and execute your program in Vice after successful
assembling.

8.2 Opcode constants

When making self modifying code or code that unrolls speed code, you have to know the value of
the opcodes involved. To make this easier all the opcodes have been given their own constant. The
constant is found by writing the mnemonic in uppercase and appending the addressing mode. So
the constant for a rts command is RTS and ‘lda #0’ is LDA_IMM. So to place an rts command at
target you write:

lda #RTS

sta target

You get the size of an mnemonic by using the asmCommandSize command

.var rtsSize = asmCommandSize(RTS) //rtsSize=1

.var ldaSize1 = asmCommandSize(LDA_IMM) //ldaSize1=2

.var ldaSize2 = asmCommandSize(LDA_ABS) //ldaSize2=3

Here are a list of the addressing modes and example constants:

Argument Description Example constant Example command

 None RTS rts
IMM Immediate LDA_IMM lda #$30
ZP Zeropage LDA_ZP lda $30

 30

ZPX Zeropage,x LDA_ZPX lda $30,x
ZPY Zeropage,y LDX_ZPY ldx $30,y
IZPX Indirect zeropage,x LDA_IZPX lda ($30,x)
IZPY Indirect zeropage,y LDA_IZPY lda ($30),y
ABS Absolute LDA_ABS lda $1000
ABSX Absolute,x LDA_ABSX lda $1000,x
ABSY Absolute,y LDA_ABSY lda $1000,y
IND Indirect JMP_IND jmp ($1000)
REL Relative BNE_REL bne loop

8.3 Colour constants

Kick Assembler has build in the colour constants of the C64:

Constant Value

BLACK 0

WHITE 1

RED 2

CYAN 3

PURPLE 4

GREEN 5

BLUE 6

YELLOW 7

ORANGE 8

BROWN 9

LIGHT_RED 10

DARK_GRAY 11

GRAY 12

LIGHT_GREEN 13

LIGHT_BLUE 14

LIGHT_GRAY 15

Example of use:

 lda #BLACK

 sta $d020

 lda #WHITE

 sta $d021

8.4 Import of binary files

It’s possible to load any file into a variable. This is done with the LoadBinary function. To extract
bytes of the file from the variable you use the get function. You can also get the size of the file with
the getSize function. Here is an example

// Load the file into the variable ’data’

.var data = LoadBinary("myDataFile")

 31

// Dump the data to the memory

myData: .fill data.getSize(), data.get(i)

When you know the format of the file, you can supply a template string that describes the memory
blocks. For each block is given a name and a start address relative to the start of the file. When you
supply a template to the LoadBinary function, the returned value will now also contain a get and a
size function for each memory block:

.var dataTemplate = "XCoord=0,YCoord=$100, BounceData=$200"

.var file = LoadBinary("moveData", dataTemplate)

XCoord: .fill file.getXCoordSize(), file.getXCoord(i)

YCoord: .fill file.getYCoordSize(), file.getYCoord(i)

BounceData: .fill file.getBounceDataSize(), file.getBounceData(i)

There is a special template tag named ‘C64FILE' which is used to load native c64 files. When this
is in the template string, the LoadBinary function will ignore the two first byte of the file, since the
first two byte of a C64 is used to tell the loader on which address it should place the file. Here is an
example of how to load and display a picture file from Koala Paint:

.const KOALA_TEMPLATE = "C64FILE, Bitmap=$0000, ScreenRam=$1f40, ColorRam=$2328,

 BackgroundColor = $2710"

.var picture = LoadBinary("picture.prg", KOALA_TEMPLATE)

.pc = $0801 "Basic Program"

:BasicUpstart($0810)

.pc =$0810 "Program"

 lda #$38

 sta $d018

 lda #$d8

 sta $d016

 lda #$3b

 sta $d011

 lda #0

 sta $d020

 lda #picture.getBackgroundColor()

 sta $d021

 ldx #0

!loop:

 .for (var i=0; i<4; i++) {

 lda colorRam+i*$100,x

 sta $d800+i*$100,x

 }

 inx

 bne !loop-

 jmp *

.pc = $0c00 .fill picture.getScreenRamSize(), picture.getScreenRam(i)

.pc = $1c00 colorRam: .fill picture.getColorRamSize(), picture.getColorRam(i)

.pc = $2000 .fill picture.getBitmapSize(), picture.getBitmap(i)

Notice how easy it is to reallocate the screen and color ram by combining the .pc and .fill
directives. To avoid typing in format types too often, Kick Assembler has some build in constants
you can use:

 32

Binary format constant Blocks Description

BF_C64FILE A C64 file (The two first bytes is
skipped)

BF_BITMAP_SINGLECOLOR ColorRam,

ScreenRam,

Bitmap

The Bitmap single color format
outputted from Timanthes.

BF_KOALA Bitmap,

ScreenRam,

ColorRam,

BackgroundColor

Files from Koala Paint

BF_FLI ColorRam,

ScreenRam,

Bitmap

Files from Blackmails FLI
editor.

So if you want to load a FLI picture, just write

.var fliPicture = LoadBinary(“GreatPicture”, BF_FLI)

The formats where chosen so they cover the outputs of Timanthes (NB. Timanthes don’t save the
background color in koala format, so if you use that you will get an overflow error). If you feel that
some formats are missing then send their format strings to me and I will include them in future
versions of Kick Assembler.

TIP: If you want to know how data is placed in the above formats, just print the constant to the

console while assembling. Example: .print “Koala format=”+BF_KOALA

8.5 Import of PSID files

The script language knows the format of PSID files. This means that you can import files directly
from the HVSC (High Voltage Sid Collection) which uses this format. To do this you use the
LoadSid function which returns a value that represents the sidfile.

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")

From this you can extract data such as the init address, the play address, info about the music and
the song data.

Attribute/Function Description

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

size The size of

getData(n) Returns the n’th byte of the module. Use this

 33

function together with the size variable to store
the modules binary data into the memory.

Here is an example of use:

.import source "stdlib.asm"

.pc =$0801 "Basic upstart program"

:BasicUpstart($5000)

//---

//---

// HVSC Player

//---

//---

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")

.pc = $5000 "Main Program"

 lda #$00

 sta $d020

 sta $d021

 ldx #0

 ldy #0

 lda #music.startSong-1

 jsr music.init

 sei

 lda #<irq1

 sta $0314

 lda #>irq1

 sta $0315

 asl $d019

 lda #$7b

 sta $dc0d

 lda #$81

 sta $d01a

 lda #$1b

 sta $d011

 lda #$80

 sta $d012

 cli

this: jmp this

//---

irq1:

 asl $d019

 inc $d020

 jsr music.play

 dec $d020

 pla

 tay

 pla

 tax

 pla

 rti

//---

.pc=music.location "Music"

.fill music.size, music.getData(i)

//--

// Print the music info while assembling

.print ""

.print "SID Data"

.print "--------"

.print "location=$"+toHexString(music.location)

.print "init=$"+toHexString(music.init)

.print "play=$"+toHexString(music.play)

 34

.print "songs="+music.songs

.print "startSong="+music.startSong

.print "size=$"+toHexString(music.size)

.print "name="+music.name

.print "author="+music.author

.print "copyright="+music.copyright

Assembling the above will create a musicplayer for the given sidfile and print the information in
the musicfile while assembling:

;--

;--

; Kick Assembler v2.00b - (C)2006 Mads Nielsen

;--

;--

…

SID Data

location=$2000

init=$2007

play=$2000

songs=1.0

startSong=1.0

size=$e66

name=Closing In

author=Jeroen Tel

copyright=1990 Maniacs of Noise

Memory Map

$0801-$080e Basic Upstart Program

$2000-$2e65 Music

$5000-$5048 Main Program

Writing file: HVSC_Player prg

TIP: If you use the –libdir option to point on your HVSC main directory then you don’t have to
write such long filenames. For example:

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")

will be

.var music = LoadSid("Tel_Jeroen/Closing_In.sid")

8.6 Converting Graphics

Kick Assembler makes it easy to convert the graphics from gif and jpg files to the basic c64
formats. A picture can be loaded into a picture value by the LoadPicture function. The picture value
can then be accessed by various functions depending on which format you want. The following will
place a single color logo in a standard 32x8 char matrix charset placed at $2000.

.pc = $2000

.var logo = LoadPicture("CML_32x8.gif")

.fill $800, logo.getSinglecolorByte([i>>3]&$1f, [i&7] | [i>>8]<<3)

If you don’t like the compact form of the .fill command you can use a for loop instead. The
following will produce the same data:

.pc = $2000

 35

.var logo = LoadPicture("CML_32x8.gif")

.for (var y=0; y<8; y++)

 .for (var x=0;x<32; x++)

 .for(var charPosY=0; charPosY<8; charPosY++)

 .byte logo.getSinglecolorByte(x,charPosY+y*8)

The LoadPicture can take a colortable as a second argument. This is used to decide which bit
pattern is produced by a pixel. In single color mode there is two bit patters (%0 and %1) and multi
color mode has four (%00, %01, %10 and %11). If you don’t specify a colortable, a default table is
created based on the colors in the picture. However, normally you wish to control which color is
mapped to a bit pattern. The following shows how to convert a picture to a 16x16 multi color char
matrix charset:

.pc = $2800 "Logo"

.var picture = LoadPicture("Picture_16x16.gif",

 List().add($444444, $6c6c6c,$959595,$000000))

.fill $800, picture.getMulticolorByte(i>>7,i&$7f)

The four colors added to the list are the rgb values for the colors that are mapped to each bit
pattern.

Finally the picturevalue contains a getPixel function from which you can get the rgb color of a
pixel. This comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Attribute/Function Description

width Returns the width of the picture in pixels

height Returns the height of the pixture in pixels

getPixel(x,y) Returns the rgb value of the pixel at position x,y. Both x and y are given
in pixels.

getSinglecolorByte(x,y) Convertes 8 pixels to a single color byte using the color table. X is given
as a byte number (= pixel position/8) and y is given in pixels.

getMulticolorByte(x,y) Convertes 4 pixels to a multi color byte using the color table. X is given
as a byte number (= pixel position/8) and y is given in pixels. (NB. This
function ignores every second pixel since the c64 multi color format is
half the resolution of the single color.)

8.7 Making 3D Calculations

To make it easy to calculate vector data, such as coordinates for a vector object or a pre calculated
vector animation, Kick Assembler supports vector values and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y
and z as argument:

.var v1 = Vector(1,2,3)

.var v2 = Vector(0,0,2)

 36

You can access the coordinates of the vector by its get functions and do the most common vector
operations by the assigned functions. Here are some examples:

.var v1PlusV2 = v1+v2

.print ”V1 scaled by 10 is ” + [v1*10]

.var dotProduct = v1*v2

Here is a list of vector functions and operators:

Function/Operator Example Decription

get(n) Returns the n’th coordinate (x=0, y=1, z=2)

getX() Returns the x coordinate

getY() Returns the y coordinate

getZ() Returns the z coordinate

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors

- Vector(1,2,3)-Vector(2,3,4) Returns the result of a subtraction between
the two vectors

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a number

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product

/ Vector(1,2,3)/2 Divides each coordinate by a factor and
returns the result

X(v) Vector(0,1,0).X(Vector(1,0,0)) Returns the cross product between two
vectors

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the
other constructor functions described later. You access the entries of the matrix by using its get and
set functions:

.var matrix = Matrix() // Creates an identintity matrix

.eval matrix.set(2,3,100)

.print “Matrix.get(2,3)=” + matrix.get(2,3)

.print “The entire matrix=“ + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be
to move the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity
matrix, which is one that leaves the coordinates unchanged. By using the set function you can
construct any matrix you like. However, Kick Assembler has constructor functions that create the
most common transform matrixes:

Function Description
Matrix() Creates an identity matrix.
RotationMatrix(aX,aY,aZ) Creates a rotation matrix where aX, aY and aZ are the angles

rotated around the x, y and z axis. The angles are given in radians.
ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled by sX, the

y-coordinate by sY and the z-coordinate by sZ.
MoveMatrix(mX,mY,mZ) Creates a move matrix that moves mX along the x-axis, mY along

the y-axis and mZ along the z-axis.
PerspectiveMatrix(zProj) Creates a perspective projection where the eye-point is placed in

 37

(0,0,0) and coordinates are projected on the XY-plane where
z=zProj

You can multiply the matrixes and thereby combine their transformations. The transformation is
read from right to left, so if you want to move the space 10 along the x axis and then rotate it 45
degrees around the z-axis, you write:

.var m = RotationMatrix(0,0,toRadians(45))*MoveMatrix(10,0,0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = m*Vector(10,0,0)

.print “Transformed v=” + v

The functions defined on matrixes are the following:

Function/Operator Example Description
get(n,m) Gets the value at n,m
set(n,m,value) Sets the value at n,m
*Vector Matrix()*Vector(1,2,3) Return the product of the matrix and a vector.
*Matrix Matrix()*Matrix() Returns the product of two matrixes

Here is a little program to illustrate how matrixes can be used. It precalculates an animation of a
cube that rotates around the x,y and z-axis and is projected on the plane where z=2.5. The data is
placed at the label ‘cubeCoords’:

 38

//--

// Objects

//--

.var Cube = List().add(Vector(1,1,1), Vector(1,1,-1), Vector(1,-1,1), Vector(1,-1,-1),

 Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

//--

// Macro for doing the precalculation

//--

.macro PrecalcObject(object, animLength, nrOfXrot, nrOfYrot, nrOfZrot) {

 // Rotate the coordinate and place the coordinates of each frams in a list

 .var frames = List()

 .for(var frameNr=0; frameNr<animLength;frameNr++) {

 // Set up the transform matrix

 .var aX = toRadians(frameNr*360*nrOfXrot/animLength)

 .var aY = toRadians(frameNr*360*nrOfYrot/animLength)

 .var aZ = toRadians(frameNr*360*nrOfZrot/animLength)

 .var zp = 2.5 // z-coordinate for the projection plane

 .var m = ScaleMatrix(120,120,0)*

 PerspectiveMatrix(zp)*

 MoveMatrix(0,0,zp+5)*

 RotationMatrix(aX,aY,aZ)

 // Transform the coordinates

 .var coords = List()

 .for (var i=0; i<object.size(); i++) {

 .eval coords.add(m*object.get(i))

 }

 .eval frames.add(coords)

 }

 // Dump the list to the memory

 .for (var coordNr=0; coordNr<object.size(); coordNr++) {

 .for (var xy=0;xy<2; xy++) {

 .fill animLength, $80+round(frames.get(i).get(coordNr).get(xy))

 }

 }

}

//--

// The vector data

//--

.align $100

cubeCoords: :PrecalcObject(Cube,256,2,-1,1)

//--

 39

9 Testing
The assembler has an .assert directive which makes it easy and quick to test a large number of
expressions. This was mainly made to test the assembler itself. It takes three arguments: A
description, an expression and an expected result.

.assert “2+5*10/2”, 2+5*10/2, 27

.assert “2+2”, 2+2, 5

.assert “Vector(1,2,3)+Vector(1,1,1)”, Vector(1,2,3)+Vector(1,1,1),

Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the
expected result and gives an error if they don’t match:

2+5*10/2=27.0 (27.0)

2+2=4.0 (5.0) -- ERROR IN ASSERTION!!!

Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

 40

10 Command line options
The command line options for Kick Assembler are:

Option Example Description
-o -o dots.prg Sets the output file. Default is the input filename with a

‘.prg’ as suffix
-libdir -libdir ../stdLib Defines a library where the assembler will look when it

tries to open external files.
-showmem -showmem Show a memory map after assembling
-execute -execute x64

or
-execute “x64

+sound”

Execute a given program with the assembled file as
argument. You can use this to start a C64 emulator with
the assembled program if the assembling is successful.

-warningsoff -warningsoff Turns off the warning messages
-log -log logfile.txt Prints the output of the assembler to a logfile
-dtv -dtv Enables DTV opcodes
-aom -aom Allow overlapping memory blocks. With this option,

overlapping memory blocks will give a warning instead
of an error.

-time -time Displays the assemble time

