Kick Assembler V2.12

Reference Manual

By Mads Nielsen

Index

I IEEOAUCTION. ..ttt ettt ettt et e et e e bt e e e bt e e s bt e e sasbeesabbeesabeeesabaeenaseeas 3
I € 1< 81 Y] 21 4 15T FO TSP 4
2.1 Running the assembIEr...........coiiiiiiiiiiiii et 4
2.2 AN eXAMPIE TNLETTUPL .eeuviieeiieeeiieeeiieeeieeeeieeesteeesteeestaeeessaeeessseeessseessseesnsseessssessnseessseesnns 4
3 Basic ASSemMDbIEr STULTccouiiiiiiie et 6
3.1 6510 COMMANGS ...cuvvieeiiieeiieeeie ettt etteeeieeeebeeesteeeseaeeesbeeesseeesseessseessseeesseeessseeens 6
3.2 Addressing modes / argUMENt LYPES ...c..eeerureeerueeeriieeriiieesreeeieeeesiteesiteesiteesbeeesbeeesbeeens 7
3.3 INUMDET fOTTNALSeeeuviieeiieeeiiee ettt s st e e st e e s beeessaeeessseeesseeensseeensneesnseeenns 8
34 Labels and multi 1abelsc.cooiiiiiiiiiiiiiiiie e 8
3.5 Memory and data AIT@CHIVES.cuuiiriieiiiieeeieeeriieeeteeesiteesteeesteeesbeeessbeeessaeeesreeesneessneens 9
3.6 The IMPOTt AITECIIVE ..eevuviiiiiiiiiiieeiie ettt ettt e st e st e e et e e sbee e sabaeesabee s 11
3.7 [000) 11111157 1 1O OO SO UUPPPRRURPPRRN 11
A EXPIESSIONS ..eeeuiiieeuiieeiitee ettt eeitte e ettt e ettt e ettt e s at e e ettt e s bt e e eabbeesabaeeaabeeeaabeeebbeeenbbeesabbeeebteeeabeeeeanee 12
4.1 Variables and CONSLANTSc.eeiviuiieiiiieeiiieeriee et e et e eiteesieeeetee e aeeesaaeeesseeeaseessneesnseeas 12
4.2 INUIMETIC VALUESeeeiiiieiiieeeiteeee ettt ettt et e et e et e e st e e et e e sabaeesabeeas 13
4.3 ParentiESEsvviieieiiiee et e e st e e e 14
4.4 SEING VALUES ..cniiieiiiiie ittt ettt e et e st e et e st e e s bt e e sabeeesaseeas 15
4.5 The Math TIDTATY ...ccouviiiiiieeieeee ettt e e e e e areesaneesnnee s 15
4.6 LUISE VALUCS ..ttt ettt ettt e et e et e s bt e et e e st e e sabee s 17
4.7 HaShtable VAIUESoeiiiiieiiieciieecee et e et e e e et eesaneesnnee s 17
4.8 Vector and MatriX VAIUES.covuiiiiiiiiiieeiee ettt st s 18
S User defiNed SLIUCTUIES ...ccvvieeiieeeiieeeiie ettt ettt eeiee et e esbeeesereeetaeeesaaeeeseseesnsreesssneesnseeesnseeennses 19
6 Branching and I0OPING.........eoeiiiiiiiiiiiiie ettt e 20
6.1 BOOICAN VAIULSeeeiiiieiiieciieeeiie et ettt ste e e st e e beeesbeeesabeeeaaeeensneennseeas 20
6.2 L ettt ettt ettt s aeeaees 20
6.3 N (o) OO OSSO PR SRUPPORUPROPRRRO 21
7 Macros and FUNCHONScouiiiiiiiiiie ettt ettt e et e st e e s e e 23
7.1 IMLACTOS .ttt ettt ettt e ettt e e ettt e e e et e e e eabbeeessabteeeesnnaeee e e nbbaeesenbaeeeeanns 23
7.2 FUNCHIOMNSttt et ettt e e it e et e e et eesabaeesabeeas 24
TN o TeToa B | B T 1118 (L USSR 25
8.1 Creating a basiC UPSLArt PIOZIAIMN ..c...ueeerurierriiieeiieeeiteeeite e st e esbeeesibeeesibeeebreesareesbeeesareeas 25
8.2 ImpOrt Of BINATY FIlESeeiiuiiieiiieeiiie et et e et e e e et e e sreeeenneee e 25
8.3 IMPOTt Of PSID fIIES....coiuiiiiiiiiiiieee ettt st 27
8.4 CONVErtiNG GTAPNICSuveiiuiieeiiiieeiiie et ettt e eiteeetteesteeesbeeessaeeesaaeeeaseeensseeensseesnseeenseeenns 29
8.5 Making 3D CalCUlatiONSeeeriieiriiieiiie ettt ettt ettt e st eesbaeesabee s 30
LB NN 1 1 V- OO O O O PO P PP 34
10 Command 1INE OPLIONS ...cceuviiiiiieiiiieeitee ettt ettt e sttt e st e e sttt e st e e sabbeesabeeesabeeesans 35

1 Introduction

This is the manual for Kick Assembler. Kick Assembler is the combination of an assembler for
doing 6510 machine code and a high level script language. With the assembler functionalities you
can write your assembler programs, and with the script language you can write programs that
generate data to use in the assembler programs. This could be data such as sine waves, coordinates
for a vector object, or graphic converters etc. In addition you can combine assembler commands
and scripting commands which is a really powerful combination. A little example: Where other
assemblers can do simple unrolling of loops, Kick Assembler can base the unrolling of a loop on a
list generated by the script language and select the content of the loop body based on the content of
the list. This makes it more flexible when generating speed code.

I would like to thank some people who made it easier to do this assembler. Thanks to Martin
‘Cruzer’ Kristensen for proofreading and testing the assembler, John ‘Graham’ Selck for his page
about the opcodes at www.oxyron.de, Gerwin Klein for doing JFlex (the lexical analyser used for
this assembler) and to Scott Hudson, Frank Flannery and C. Scott Ananian for doing CUP (The
parser generator).

I would like to hear from people using this assembler so don’t hesitate to write your comments to
kickassembler @no.spam.theweb.dk (<- Remove no.spam. for real address). After the publication
of the beta-release on CSDB, a lot of cool feedback has found its way to my mailbox. Thanks guys!
Your feedback is greatly appreciated!

I wish you happy coding..

2 Getting started

This chapter is written to quickly get you started using Kick Assembler. The details of the
assembler’s functionalities will be presented later.

2.1 Running the assembler

Kick Assembler is written in java and distributed in the executable jar file ‘kickass.jar’. To run
Kick Assembler, you have to have Java5.0 or better installed on you machine. This can be
downloaded for free from Sun’s website (http://java.com/en/download/index.jsp). To assemble the
file myCode.asm simply write:

java —jar kickass.jar myCode.asm

2.2 An example interrupt

Below is a little sample program to quickly get you started using Kick Assembler. It sets up an
interrupt which play some music. It shows you how to use non-standard features as the .pc
directive, comments and how to use macros and include external files. This should be enough to get
you (kick) started.

.pc = $4000 "Main Program"

lda #3500
sta $d4020
sta $d021
lda #3500
jsr $1000 // init music
sei

lda #<irqgl
sta $0314
lda #>irqgl
sta $0315
asl $d019
lda #S$7b
sta $dc0d
lda #5381
sta $d0la
lda #S$1b
sta $d011
lda #3580
sta $d012
cli

asl $d019
:SetBorderColor (2)

jsr $1003 // play music
:SetBorderColor (0)

pla

tay

pla

tax

pla

rti

.pc=$1000 "Music"
.import binary "ode to 64.bin"

// A little macro

.macro SetBorderColor (color) {
lda #color
sta $d020

3 Basic Assembler stuff

This chapter describes the mnemonics and the basic directives that are not related to the script
language.

3.1 6510 Commands
In Kick Assembler you can write assembler mnemonics the traditional way:
lda #0

sta $d020
sta $d021

However, it ignores format statements such as newline and tabs so you can format your program in
any coding style. If you wish, you can write your entire program in one line:

lda #0 sta $d020 sta $d021

This comes in handy when using the script language. Kick Assembler supports all opcodes, also the
illegal ones. A complete list of commands and their opcodes in the each mode is shown here:

Mnemonic noarg imm zp i rel
adc $69 $65 $75 $61 $71 s$6d $7d $79

ahx $93 S9f

alr $4b

anc $S0b

anc?2 $2b

and $29 $25 $35 $21 $31 $2d $3d $39

arr S6b

asl $0a $06 $16 $0e Sle

axs Scb

bcc $90

bcs $b0

beqg $£0

bit $24 $34 $2c $3c

bmi $30

bne $d0

bpl $10

brk $00

bvc $50

bvs $70

clc $18

cld $ds

cli $58

clv $b8

cmp $c9 $c5 [$d5 $cl [$dl | Scd | $dd | $d9

cpx $el Sed Sec

cpy $co Sc4 Scc

dcp $c $d7 $c3 $d3 Scf $df $db

dec Scé $d6 Sce Sde

dex Sca

dey $88

eor $49 $45 $55 $41 $51 $4d $5d $59

inc $eb $f6 See Sfe

inx Se8

iny $c8

isc Se’7 St $e3 S$S£3 Sef Sff Sfb
jmp S4c S6c
jsr $20

las $Sbb
lax Sab Sa7 Sb7 $a3 S$b3 Saf Sbf
lda $a9 $ab $b5 Sal S$bl Sad $bd $b9
1dx Sa2 Sa6 $Sbo6 Sae Sbhe
1dy $ao Sa4d Sb4 Sac Sbc

lsr $S4a $46 $56 Sde $5e

nop Sea

ora $09 $05 $15 $01 $11 $0d $1d $19
pha $48

php $08

pla $68

plp $28

rla $27 $37 $23 $33 $2f $3f $3b
rol $2a $26 $36 $2e $3e

ror $6a $66 $76 See STe

rra $67 $77 $63 $73 S6f $TE S$7b
rti $40

rts $60

sax $87 $97 $83 $8f

sbc S$e9 Se5 S£5 Sel Sfl Sed S$fd $£9
sbc2 Seb

sec $38

sed S$£8

sei $78

shx $S9%e
shy $9c

slo $07 $17 $03 $13 S0f S1f S1b
sre $47 $57 $43 $53 $4f $5f $5b
sta $85 $95 $81 $91 $8d $9d $99
stx $86 $96 $8e

sty $84 $94 $8c

tas $9b
tax Saa

tay $a8

tsx Sba

txa $8a

txs $9a

tya $98

xaa $8b

3.2 Addressing modes / argument types
Kick Assembler uses the traditional notation for addressing modes / argument types:

Mode Example

No argument nop
Immediate 1da #$30
Zeropage 1da $30
Zeropage,x Ida $30,x
Zeropage,y 1dx $30,y
Indirect zeropage,x Ida ($30,x)
Indirect zeropage,y 1da ($30),y
Abolute 1da $1000
Absolute,x 1da $1000,x
Absolute,y lda $1000,y
Indirect jmp ($1000)
Relative to program counter bne loop

An argument is converted to its zeropage mode if possible. This means that 1da $0030 will generate
an Ida command in its zeropage mode.

3.3 Number formats
Kick Assembler supports the standard number formats:

Prefix Format Example

Decimal 1da #42
$ Hexadecimal 1da #$2a
% Binary 1da #%101010

3.4 Labels and multi labels

Label declarations in Kick Assembler ends with ‘:” and have no postfix when referred to, as shown
in the following program:

inc $d020
inc $d021
jmp loop

loop:

Kick Assembler also supports multi labels which are labels that can be declared more than once.
These are useful to prevent name conflicts between labels. A multi label starts with a ‘!” and when
your reference it you have to end with a ‘+’ to refer to the next multi label or ‘- to refer to the
previous multi label:

1dx #100
inc $d4020
dex
bne

'loop:

!loop- // Jumps to the last instance of !loop
1ldx
inc
dex
bne

#100
'loop: $d021

!loop- // Jumps to the last instance of !loop

or

1dx #10

'loop:
Jmp !+ // Jumps over the two next nops to the ! label
nop
nop

e jmp '+ // Jumps over the two next nops to the ! label
nop
nop

dex
bne !loop- // Jumps to the last !loop label

A “*’ returns the value of the current memory location so instead of using labels you can write your
jumps like this:

With ‘*’ reference: With label:
jmp * this: jmp this
inc $d020 !'loop: inc $d020
inc $d021 inc $d021
Jjmp *-6 jmp !loop-

3.5 Memory and data directives

The .pc directive is used to set the program counter. A program should always start with a .pc
directive to tell the assembler where to put the program. Here are some examples of use:

.pc = $1000 "Program"

1dx #10
'loop: dex

bne !loop-

rts

.pc = $4000 "Data"
.byte 1,0,2,0,3,0,4,0

$5000 "More data"
.text "Hello"

.pc

The last argument is optional and is used to name the memory block created by the directive. When
using the ‘-showmem’ option when running the compiler a memory map will be generated which
display the memory usages and the name of the block. The map of the above program looks like
this:

Memory Map

$1000-$1005 Program
$4000-$4007 Data

$5000-$5004 More data
With the .align directive you can .align the program counter to a given interval. This is useful for
optimizing your code since crossing a memory page boundary gives a penalty of one cycle for

memory referring commands. To avoid this, use the .align command to align your tables:

.pc = $1000 "Program"

1dx #1
lda data, x
rts
.pc = $10ff //Bad place for the data
.align $100 //Alignment to the nearest page boundary saves a cycle

data: .byte 1,2,3,4,5,6,7,8

The .byte, .text and .word directives are used to generate byte data, word data (one word= two
bytes) and text data as in standard 6510 assemblers (See previous example).

With the .fill directive you can fill a section of the memory with bytes. It works like a loop and
automatically sets the variable 1 to the byte number.

.fil1l1 5, O // Generates byte 0,0,0,0,0
.fi11 5, 1 // Generates byte 0,1,2,3,4
.fi11 256, 127.5 + 127.5*sin(toRadians(i*360/256)) // Generates a sine curve

In case you want your code placed at position $1000 in the memory but want it assembled like it
was placed at $2000 then you can use the .pseudopc directive:

.pc = $1000 “Program to be relocated in $2000”
.pseudopc $2000 {
loop: inc $d020
jmp loop // Will produce jmp $2000 instead of jmp $1000
}

Here is an overview of the memory and data directives:

Form Example Description
.pc = <expr> [“name”] | .pc = $1000 Set the program counter.
“Program”
.align <expr> .align $100 Aligns the program counter to a given interval.
.byte <expr list> byte 1,2,3,4 Generates byte data.
.word <expr list> .word 1,2,3,4 Generates word data.
.text <expr> .text “Hello” Generates text data.
ill <expr>, <expr> fill 256, 0 Generates a number of bytes, given by the first
fill 256, 1 expression, with the data given by the second
expression. The variable i is set to the byte number
in the second expression.
.pseudopc <expr> .pseudopc $2000 | Assembles code as if it was placed at a different
{...} {...} location.

10

3.6 The import directive

With the import directive you can import external files in your source. You can import binary files
and other sourcefiles:

// import the bytes from the file ‘music.bin’
.import binary “Music.bin”

// Import and assemble the sourcefile ‘standardlibrary.asm’
.import source *“StandardLibrary.asm”

When Kick Assembler searches for a file it first look in the current directory. Afterwards it looks in
the directories supplied by the ‘-libdir’ parameter when running the assembler. This enables you to
create standard libraries for files you use in several different sources. A command line could look
like this:

java —-jar kickass.jar myProgram.asm —-libdir ..\music -libdir c:\codel\stdlib

3.7 Comments

Comments are pieces of the program that are ignored by the assembler. Kick Assembler supports
line comments and block comments known from language such as C++ and Java. When the
assembler sees ‘//° it ignores the rest of that line. C block comments ignores everything between /*
and */.

2
This little program is made to demonstrate comments
__ * /

lda #10

sta $d020 // This is also a comment

sta /* Comments can be placed anywhere */ $d021

rts

Traditional 6510 asm line comments (;) are not supported since the semicolon is used in for-loops
in the script language.

Type Form Description

C line comments // This is also a comment Ignores the rest of the line

C block comments /* Ignores everything between /*
This is a block comment and */
*/

11

4 Expressions

Kick assembler has a build in mechanism for evaluating expressions. An example of an expression
is 254+2*3/x. Expressions can be used in many contexts, for example to calculate the value of a
variable or to define a byte:

1da #25+2*3/x
.byte 25+2%3/x

Normal assemblers can only calculate expressions based on numbers, while Kick Assembler can
evaluate expressions based on a many different types like: Numbers, Booleans, Strings, Lists,
Vectors and Matrixes. So if you want to calculate an argument based on the second value in a list
you write.

Lda #35+myList.get (2)
Or perhaps you want to generate your argument based on the x-coordinate of a vector:

Lda #35+myVector.getX()

Or perhaps on the basis of the x-coordinate on the third vector in a list:

Lda #35+myVectorList.get (3) .getX()

I think you have got the idea by now. Kick Assembler evaluation mechanism is much like those in
modern programming languages. It has a kind of object oriented approach so calling a function on a
value(/object) executes a function specially connected to the value. Operators like +, —,*, /, ==,

! = etc. are seen as functions and are also specially defined for each type of value.

In the following chapters will be given a detailed description of how to use the value types and
functions in Kick Assembler.

4.1 Variables and constants
Before you can use variables you have to declare them. You do this by a var directive:

.var x=25
lda #x // Gives lda #25

If you want to change x later on you write:

.eval x=x+10
lda #x // Gives lda #35

This will increase x by 10. The .eval directive is used to make Kick Assembler evaluate
expressions. In fact the ‘.var’ directive above is just a convenient shorthand of ‘.eval var x =25’
where ‘var’ is subexpression that declares a variable (This will come in handy later when we want
to define variables in for-loops).

12

Two other shorthands exists: The ++ and the —— operator which automatically calls a referenced
variables with +1 or -1. For example:

.var x = 0
.eval x++ // Gives x=x+1
.eval x—— // Gives x=x-1

Experienced users of modern programming languages will know that assignments returns a value,
so that x =y =z = 25 first assigns 25 to z, which returns 25 that is assigned to y which returns 25
that is assigned to x. Kick Assembler supports this too. Notice that the ++ and —— works as real ++
and —— postfix operators, which means that they returns the original value and not the new (Ex:
.eval x=0 .eval y=x++,willsetx to 1 andy to0)

You can also declare constants:

.const c=1 // Declares the constant ¢ to be 1
.eval const pi=3.1415 // Declares the constant pi using the eval form
.const name = “Camelot” // Constant can assume any value, for example string

A constant can’t be assigned a new value so .eval pi=22 will generate an error. Note that not all
values are immutable, so if you define a constant that points to a list, the content of the list can still
change.

With the enum statement you can define enumerations which are series of constants:

.enum {singleColor, multiColor} // Defines singleColor=0, multiColor=1

.enum {effectl=1l,effect2=2,end=S$ff} // Assigns values explicit

.enum {up,down,left,right, none=$ff} // you can mix implicit and explicit
// assignment of values

4.2 Numeric values

Numeric values are numbers covering both integers and floats. Standard numerical operators (+,-
,J¥/) work as in standard programming languages. You can combine them with each other and they
will obey the standard precedence rules. Here are some examples:

25+3
5+2.5*3-10/2
charmmem + y * $100

In practical use they can look like this:

.var charmem = $0400
1dx #0
lda #0
loop: sta charmem
sta charmem
sta charmem
sta charmem
inx
bne loop

0*$100, x
1*$100, x
2*%$100, x
3*$100, x

+ 4+ + o+

13

You can also use the bitwise operators to perform and, or, exclusive or and bit shifting operations.

.var x=$12345678

.word x & SOO0ff, [x>>16]

& SOOff

(gives .word $0078, $0034)

Special for 6510 assemblers are the high and low-byte operators (>,<) that are typically used like

this:

lda #<interuptl

sta $0314

lda #>interuptl

sta $0315

These are also available in Kick Assembler. Here is a list of numeric operators that returns a

numeric value:

Name Operator Examples Description

Unary minus Inverts the sign of a number

Plus + 10+2 =12 Adds two numbers

Minus - 10-8=2 Subtracts two numbers

Multiply * 2%3 =6 Multiply two numbers

Divide / 10/2 =5 Divides two numbers

High byte > >$1020 = $10 Returns the second byte of a number

Low byte < <$1020 = $20 Returns the first byte of a number

Bitshift left << 2<<2 =8 Shifts the bits by a given number of
spaces to the left.

Bitshift right >> 2>>1=1 Shifts the bits by a given number of
spaces to the right.

Bitwise and & $3f & $0f = $f Performs bitwise and between two
numbers

Bitwise or I $0f 1 $30 = $3f Performs a bitwise or between two
numbers

Bitwise eor A $ff A $f0 = $Of Performs a bitwise exclusive or between
two numbers

4.3 Parentheses

Since traditional 6510 assembler notation have already used soft parenthesis to signal an indirect
addressing mode, you will have to use hard parenthesis to specify a sub expression that shall be

evaluated before others.

lda #2+5*2
lda #[2+5]1*2

// gives lda #12
// gives lda #14

You can nest as many parentheses as you want, so [[[[2+4]]]*3]+25.5 is a legal expression.

14

4.4 String values
Strings are used to contain text. You can define a string like this:

.var message = “Hello World”
.text message // Gives .text “Hello world”

Every object has a string representation and you can concatenate strings with the + operator. For
example:

.var x=25
.var myString= “X is *“ + x // Gives myString = “X is 25"

You can use the .print directive to print a string to the screen while assembling. This is useful in
debugging. Printing x and y can be done like this:

.print “x="+x
.print “y="+y

You can also print labels to see which place in the memory they refer to. If you do this, its best to
convert the labelvalue to hexadecimal notation first:

.print “intl=$"+toHexString(intl)

intl: sta regA+l
stx regX+1
sty reg¥+1
lsr $d019
// Etc.

Here is a list of functions/operators defined on strings:

Function/Operator Description

+ Appends two strings

size() Returns the number of characters in the string

charAt(n) Returns the character at position n

substring(il,i2) Returns the substring beginning at 11 and ending at 12 (char at 12 not
included)

4.5 The math library

Kick Assembler’s math library is built upon the Java5.0 math library. This means that nearly every
constant and command in Java’s math library is available in Kick Assembler. Here is a list of
available constants and commands. For further explanation consult the java5.0 documentation at
Suns homepage.

Constant Value

PI 3.141592653589793
E 2.718281828459045

15

Function Description

abs(x) Returns the absolute (positive) value of x

acos(x) Returns the arc cosine of x

asin(x) Returns the arc sine of x

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the positive x-axis.
Useful when converting to polar coordinates

cbrt(x) Returns the cube root of x

ceil(x) Rounds up to the nearest integer.

cos(r) Returns the cosine of r

cosh(x) Returns the hyperbolic cosine of r

exp(x) Returns e*

expm1(x) Returns e*-1

floor(x) Rounds down to the nearest integer

hypot(a,b) Returns sqrt(x +y")

IEEEremainder(x,y) | Returns the remainder of the two numbers as described in the IEEE 754
standard.

log(x) Returns the natural logarithm of x

log10(x) Returns the base 10 logarithm of x

loglp(x) Returns log(x+1)

max(x,y) Returns the highest number of x and y

min(x,y) Returns the smallest number of x and y

pow(X,y) Returns x”

random() Returns a random number x where 0 <x < 1

round(x) Rounds x to the nearest integer

signum(Xx) Returns 1 if x>0, -1 if x<0 and O if x=0

sin(r) Returns the sine of r

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(r) Returns the tangent of r

tanh(x) Returns the hyperbolic tangent of x

toDegrees(r) Converts a radian angle to degrees

toRadians(d) Converts a degree angle to radians

Here are some examples of use.

// Load a with a random number
lda #random()*256

// Generate a sine curve
.fill 256, round(127.5+127.5*sin(toRadians (1i*360/256)))

16

4.6 List values

List values are used to hold a list of other values. To create a list you use the ‘List()’ function. It
takes one argument that tells how many elements it contains. If it is left out, the created list will be
empty. Use the get and set operations to retrieve and set the elements.

.var myList = List (2)
.eval myList.set (0,25)
.eval myList.set(l, “Hello world”)
.byte myList.get (0) // Will give .byte 25
.text myList.get (1) // Will give .text *“Hello world”

You can determine the number of elements in a list with the size function and the add function adds
more elements.

.var greetingsList = List ()
.eval greetingsList.add(”Maniacs of Noise”, "”Oxyron”, *“etc.”)
.byte listSize = greetingsList.size() // gives .byte 3

A compact way to fill a list with elements is:

7

.var greetingsList = List () .add(”Maniacs of Noise”, "Oxyron”, *“etc.”)

Here is a list of functions defined on list values:

Functions Description

get(n) Gets the n’th element

set(n,value) Sets the n’th element

add(valuel, value2, ...) | Add elements to the end of the list
size() Returns the size of the list
remove(n) Removes the n’th element

4.7 Hashtable values

Hashtables are tables that maps keys to values. You can define a hashtable with the Hashtable
function. To enter and retrieve values you use the put and get functions, and with the keys function
you can retrieve a list of all keys in the table:

// Define the table
.var ht = Hashtable()

// Enter some values (put (key,value))
.eval ht.put (“ram”, 64)

.eval ht.put (“bits”, 8)

.eval ht.put(1l, “Hello”)

.eval ht.put(2, “World”)
(

.eval ht.put(“directions”, List().add(“Up”,”Down”,”Left”,”Right”))

// Retrieve the values

.print ht.get (1) // Prints Hello
.print ht.get (2) // Prints World
.print “ram = “ + ht.get(“ram”) + “kb” // Prints ram=64kb

17

// Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
.print keys.get (1) // Prints “ram”, *“bits”, 1, 2, directions

}

When a value is used as key then it’s the values string representation that’s used. This means that
ht.get (“1.0”) and ht.get (1) gets the same element. If you try to get an element that isn’t
present in table, a null value is returned.

Function Description

put(key,value) Maps ‘key’ to ‘value’. If the key is previously
mapped to a value, the previous mapping is lost.

get(key) Returns the value mapped to ‘key’. A null value
is returned if no value has been mapped to the
key.

keys() Returns a list value of all the keys in the table

4.8 Vector and Matrix values

Kick Assembler also supports vector values and matrix values. You can read about the in the
section “Making 3d Calculations” in the special features chapter.

18

5 User defined structures

It is possible to define your own structures. A structure is a collection of variables like for example

a point which consist of an x and a y coordinate:

// Define a point structure
.struct Point {x,vy}

// Create a point with x=1 and y=2 and print it
.var pl = Point(1,2)

.print "pl.x=" + pl.x

.print "pl.y=" + pl.y
// Create a point with the default contructor and modify its arguments
.var p2 = Point()

.eval p2.x =3

.eval p2.y =4

You define a structure with the .struct directive. The above structure have the name ‘Point’ and
consist of the variables x and y. To create an instance of the structure, you use its name as a

function. You can either give no arguments to the function or give the init values of the variables.

You can use the values generated by structures as any other variables, ex:

lda #0
1dy #pl.y
sta charset+ [pl.x>>3]*height,y

19

6 Branching and looping

Kick Assembler have control directives which lets you put conditions on when a directive is
executed and how many time it is executed. These are explained in this chapter.

6.1 Boolean values

The conditions for control directives are given by boolean values, which are values that can be true
and false. They are generated and used as in programming languages like Java and C#. The
following are examples of boolean variables:

.var myBooleanl = true // Set the variable to true
.var myBoolean2 = false // Set the variable to false
.var fourHigherThanFive = 4>5 // Sets fourHigherThanFive = false
.var aEqualsB = a==Db // Sets true if a is the same as b
.var xNotl0 = x!=10 // Sets true if x doesn’t equals 10

Here is the standard set of operators for generating Booleans:

Name Operator Example Description

Equal = a==b Returns true if a equals b, otherwise false

Not Equal = at=b Returns true if a doesn’t equal b, otherwise false

Greater ” a>b Returns true if a is greater than b, otherwise false

Less < a<b Returns true if a is less than b, otherwise false

Greater than | ~~ a>=b Returns true if a is greater than or equal to b, otherwise false
Less than <= a<=b Returns true if a is less or equal to b, otherwise false.

All the operators are defined for number values, other values have defined a subset of the above.
E.g. You can’t say that one boolean is greater than another, but you can see if they have the same
values:

true==true // Sets bl to true
true!=[10<20] // Sets b2 to false

.var bl
.var b2

Boolean values have a set of operators assigned. These are the following:

Name Operator Example Description

Not ! ta Returns true if a is false, otherwise false
And && a&s&b Returns true if a and b are true, otherwise false
Or Il Allb Returns true if a or b are true, otherwise false

.var allTrue = 10HigherThanl00 && aEqualsB // Is true if the two boolean
// arguments are true.

6.2 .if

If-directives works like in programming languages. With an .if directive you have the following
directive executed only if a given boolean expression is evaluated to true. Here are some examples:

20

// Set x to 10 if x is higher that 10
.1f (x>10) .eval x=10

// Only show rastertime if the ‘showRasterTime’ boolean is true
.var showRasterTime = false

.if (showRasterTime) inc $d020

jsr PlayMusic

.1f (showRasterTime) dec $d020

You can group several statements together with a {...} and have them executed together if the
boolean expression is true:

// If IrgNr is 3 then play the music
Lif (irgNr==3) {

inc $d020

jsr music+3

dec $d020
}

By adding an else statement you can have an expression executed if the boolean expression is false:

// Add the x’th entry of a table if x is positive and
// the subtract it if x is negative
.if (x>=0) adc zpXtable+x else sbc zpXtable+abs (x)

// Init an offsettable or print a warning if the table length is exceeded
.1if (i<tablelength) {

lda #0

sta offsetl+i

sta offset2+i

} else {
.print “Error!! i is too high!”
}
6.3 .for

With the .for directive you can generate loops as in modern programming languages. The .for
directive takes an init expression list, a boolean expression and an iteration list separated by a
semicolon. The two last arguments and the body are executed as long as the boolean expression
evaluates to true.

// Prints the numbers from 0 to 9
.for(var 1=0;1<10;i++) .print “Number ” + i

// Make data for a sine wave
.for(var 1=0;1<256;1++) .byte round(127.5+127.5*sin(toRadians (360*1/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions
separated by comma:

// Print the numbers from 0 to 9
.var 1=0
.for (;i<10;) {

.print i

.eval i++

21

}

// Sum the numbers from 0 to 9 and print the sum at each step
.for(var 1=0, var sum=0;i<10; sum=sum+i, i++)
.print “The sum at step “ + i is

7 7

+ sum

The for loop is good for generating tables and unrolling loops. You can for example do a classic
‘blitter fill’ routine like this:

.var blitterBuffer=$3000
.var charset=$3800
.for (x=0;x<16;x++) {
for (var y=0;y<128;y++) {
if (var y=0) lda blitterBuffer+x*128+y
else eor blitterBuffer+x*128+y
sta charset+x*128+y

22

7 Macros and Functions

This chapter shows you how to define and use your own macros and functions.

7.1 Macros

Macros are collections of assembler directives. When called they generate code as if the directives
where placed at the macro call. The following code defines and executes the macro ‘SetColor’:

// Define macro

.macro SetColor (color) {
lda #color
sta $d020

}

// Execute macro
:SetColor (1)

The macro can have any number of arguments. Macro calls are encapsulated in a scope so any
variable defined inside a macro can’t be seen from the outside. This means that a series of macro
calls to the same macro doesn’t interfere:

// Execute macro

:ClearScreen($0400, $20) // Since they are encapsulated in a scope

:ClearScreen($4400, $20) // the two resulting loop labels doesn’t
// interfere

// Define macro
.macro ClearScreen(screen,clearByte) {
lda #clearByte
1dx #0
Loop: // The loop label can’t be seen from the outside
sta screen, x
sta screen+$100, x
sta screen+$200, x
sta screen+$300, x
inx
bne Loop
}

Notice that in the above example the macro execution happens before the definition. This is ok
since in the first pass of the code the assembler searches for macros and uses them from the second
pass.

Macros are good for building libraries. In my standard library I have macros for moving and filling
memory, setting up char matrixes, declaring basic upstart programs etc’. They are also good when
doing things like double buffering. Typically you have a routine you want to work on two buffers,
but making it take the buffer as an argument would slow it down. Instead you define the routine in
a macro which takes a buffer as an argument and then call the macro with each buffer. This saves
you the trouble of otherwise maintaining two identical routines only differing by the buffer they
use.

" The library isn’t included in the assembler.

23

Macros don’t return any values when executed, but they can have side effects so you can use them
a bit like functions by giving them an argument in which they can return a value. But usually you
would use functions instead.

7.2 Functions
You can also define you own functions. Here is an example of a function:

.function area(width,height) {
.return width*height

}
lda #10+area (4, 8)

You can use your own functions like you would use any of the library functions described earlier.
Functions consist of non-byte generating directives like .eval, .for, .var and .if. When the assembler
evaluates the .return directives it returns the value given by the following expression. If no
expression is given, or if no .return directive is reached, a null value is returned. Here are some
more examples of functions:

// Returns if a number is odd or even
.function oddEven (number) {
.if ([number&l] == 0) .return "even"
else .return "odd"

}

// Empty function - always returns null
.function emptyFunction() {

}

As macros, functions can have side effects as shown in the following function that returns no result
(null), but modifies its list argument. Also see how the null value can be used as a null-pointer.

// Inserts null in all elements of a list
.function clearList (list) {

// Return if the list is null

.if (list==null) .return

.for(var i=0; i<list.size(); i++) {
list.set(i,null)
}
}

With functions you can calculate data for your programs. Instead of using other programming
languages like C or Java you can code your data generators directly in the Assembler. Put your data
in a list and use the list to generate your speed code or your .byte tables. This eases the
development process by making it more integrated.

24

8 Special features

In the previous chapters we have described general features of Kick Assembler that can be used to
solve a wide area if problems. In this chapter we describe special features that where implemented
to solve specific problems such as importing sid files, or making vector calculations.

8.1 Creating a basic upstart program

To make the assembled machine code run on a C64 or an emulator, it’s useful to include a little
basic program that starts your code (For example: 10 sys 4096). The BasicUpstart macro is
standard macro that helps you to create programs like that. The following program shows how it’s
used:

.pc = $0801 "Basic Upstart"
:BasicUpstart ($0810) // 10 sys$0810

.pc =$0810 "Program"
'loop:

inc $d020

inc $d021

Jjmp !loop-—

TIP: Insert at basic upstart program in the start of your programs and use the —execute option to
start Vice. This will automatically load and execute your program in Vice after successful
assembling.

8.2 Import of binary files

It’s possible to load any file into a variable. This is done with the LoadBinary function. To extract
bytes of the file from the variable you use the get function. You can also get the size of the file with
the getSize function. Here is an example

// Load the file into the variable ’data’
.var data = LoadBinary("myDataFile")

// Dump the data to the memory
myData: .fill data.getSize(), data.get (i)

When you know the format of the file, you can supply a template string that describes the memory
blocks. For each block is given a name and a start address relative to the start of the file. When you
supply a template to the LoadBinary function, the returned value will now also contain a get and a
size function for each memory block:

.var dataTemplate = "XCoord=0,YCoord=$100, BounceData=$200"

.var file = LoadBinary("moveData", dataTemplate)

XCoord: .fill file.getXCoordSize(), file.getXCoord(i)

YCoord: .fill file.get¥YCoordSize(), file.getYCoord(i)

BounceData: .fill file.getBounceDataSize(), file.getBounceData (i)

25

There is a special template tag named ‘C64FILE' which is used to load native c64 files. When this
is in the template string, the LoadBinary function will ignore the two first byte of the file, since the
first two byte of a C64 is used to tell the loader on which address it should place the file. Here is an
example of how to load and display a picture file from Koala Paint:

.const KOALA_TEMPLATE = "C64FILE, Bitmap=$0000,
.var picture = LoadBinary("picture.prg",

.pc = $0801 "Basic Program"

:BasicUpstart ($0810)

.pc =$0810 "Program"

lda #$38
sta $d018
lda #$d8
sta $d016
lda #$3b
sta $d011
lda #0

sta $d020

lda #picture.getBackgroundColor ()

sta $d021
1dx #0
!'loop:

.for (var i=0;

i<4; i++) {

lda colorRam+i*$100, x

sta $d800+1i*$100, x

}

inx

bne !loop-
jmp *

$0c00
$1c00 colorRam:
$2000

.pc
.pc
.pc

.fill picture.getScreenRamSize (),
.fill picture.getColorRamSize (), picture.getColorRam(i)
.fill picture.getBitmapSize(), picture.getBitmap (i)

ScreenRam=$1f40,

KOALA_TEMPLATE)

ColorRam=$2328,
BackgroundColor = $2710"

picture.getScreenRam(1i)

Notice how easy it is to reallocate the screen and color ram by combining the .pc and .fill
directives. To avoid typing in format types too often, Kick Assembler has some build in constants

you can use:

Binary format constant Blocks Description

BF_C64FILE A C64 file (The two first bytes is

skipped)

BF_BITMAP_SINGLECOLOR ColorRam, The Bitmap single color format
ScreenRam, outputted from Timanthes.
Bitmap

BEF_KOALA Bitmap, Files from Koala Paint
ScreenRam,
ColorRam,
BackgroundColor

BF_FLI ColorRam, Files from Blackmails FLI
ScreenRam, editor.
Bitmap

26

So if you want to load a FLI picture, just write
.var fliPicture = LoadBinary(“GreatPicture”, BF_FLI)

The formats where chosen so they cover the outputs of Timanthes (NB. Timanthes don’t save the
background color in koala format, so if you use that you will get an overflow error). If you feel that
some formats are missing then send their format strings to me and I will include them in future
versions of Kick Assembler.

TIP: If you want to know how data is placed in the above formats, just print the constant to the
console while assembling. Example: .print “Koala format="+BF_KOALA

8.3 Import of PSID files

The script language knows the format of PSID files. This means that you can import files directly
from the HVSC (High Voltage Sid Collection) which uses this format. To do this you use the
LoadSid function which returns a value that represents the sidfile.

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")

From this you can extract data such as the init address, the play address, info about the music and
the song data.

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

size The size of

getData(n) Returns the n’th byte of the module. Use this
function together with the size variable to store
the modules binary data into the memory.

Here is an example of use:

.import source "stdlib.asm"
.pc =$0801 "Basic upstart program"
:BasicUpstart ($5000)

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")
.pc = $5000 "Main Program"
lda #$00

27

sta $d020

sta $d021

1ldx #0

1dy #0

lda #music.startSong-1
jsr music.init
sei

lda #<irql

sta $0314

lda #>irql

sta $0315

asl $d019

lda #$7b

sta $dc0d

lda #$81

sta $d0la

lda #$1b

sta $d011

lda #$80

sta $d012

asl $d019

inc $d020

jsr music.play
dec $d020

pla

tay

pla

tax

pla

rti

.pc=music.location "Music"
.fil1l music.size, music.getData (i)

/==
// Print the music info while assembling

.print ""

.print "SID Data"

.print "-——————— "

.print "location=$"+toHexString(music.location)
.print "init=$"+toHexString(music.init)

.print "play=$"+toHexString(music.play)

.print "songs="+music.songs

.print "startSong="+music.startSong

.print "size=$"+toHexString(music.size)

.print "name="+music.name

.print "author="+music.author

.print "copyright="+music.copyright

Assembling the above will create a musicplayer for the given sidfile and print the information in
the musicfile while assembling:

location=$2000
init=$2007

play=$2000

songs=1.0

startSong=1.0

size=$5e66

name=Closing In

author=Jerocen Tel
copyright=1990 Maniacs of Noise

Memory Map

$0801-5080e Basic Upstart Program
$2000-$2e65 Music
$5000-$5048 Main Program

Writing file: HVSC_Player prg
TIP: If you use the —libdir option to point on your HVSC main directory then you don’t have to
write such long filenames. For example:

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/Closing_In.sid")

will be

.var music = LoadSid("Tel_Jeroen/Closing_In.sid")

8.4 Converting Graphics

Kick Assembler makes it easy to convert the graphics from gif and jpg files to the basic c64
formats. A picture can be loaded into a picture value by the LoadPicture function. The picture value
can then be accessed by various functions depending on which format you want. The following will
place a single color logo in a standard 32x8 char matrix charset placed at $2000.

.pc = $2000
.var logo = LoadPicture("CML_32x8.gif")
.fill $800, logo.getSinglecolorByte([i>>3]&S$1f, [i&7] | [i>>8]<<3)

If you don’t like the compact form of the .fill command you can use a for loop instead. The
following will produce the same data:

.pc = $2000
.var logo = LoadPicture("CML_32x8.gif")
.for (var y=0; y<8; y++)
.for (var x=0;x<32; x++)
.for (var charPosY=0; charPos¥<8; charPosY++)
.byte logo.getSinglecolorByte (x,charPosY+y*8)

The LoadPicture can take a colortable as a second argument. This is used to decide which bit
pattern is produced by a pixel. In single color mode there is two bit patters (%0 and %1) and multi
color mode has four (%00, %01, %10 and %11). If you don’t specify a colortable, a default table is
created based on the colors in the picture. However, normally you wish to control which color is
mapped to a bit pattern. The following shows how to convert a picture to a 16x16 multi color char
matrix charset:

.pc = $2800 "Logo"

.var picture = LoadPicture("Picture_1l6x16.gif",
List().add($444444, $6c6e6c,$959595,5000000))

29

.fi11 $800, picture.getMulticolorByte (i>>7,1i&$7f)

The four colors added to the list are the rgb values for the colors that are mapped to each bit
pattern.

Finally the picturevalue contains a getPixel function from which you can get the rgb color of a
pixel. This comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

width Returns the width of the picture in pixels

height Returns the height of the pixture in pixels

getPixel(x,y) Returns the rgb value of the pixel at position x,y. Both x and y are given
in pixels.

getSinglecolorByte(x,y) | Convertes 8 pixels to a single color byte using the color table. X is given
as a byte number (= pixel position/8) and y is given in pixels.
getMulticolorByte(x,y) | Convertes 4 pixels to a multi color byte using the color table. X is given
as a byte number (= pixel position/8) and y is given in pixels. (NB. This
function ignores every second pixel since the c64 multi color format is
half the resolution of the single color.)

8.5 Making 3D Calculations

To make it easy to calculate vector data, such as coordinates for a vector object or a pre calculated
vector animation, Kick Assembler supports vector values and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y
and z as argument:

.var vl = Vector(l,2,3)
.var v2 Vector (0,0, 2)

You can access the coordinates of the vector by its get functions and do the most common vector
operations by the assigned functions. Here are some examples:

.var v1PlusV2 = vl1+v2

.print ”V1 scaled by 10 is ” + [v1i*10]
.var dotProduct = v1*v2

Here is a list of vector functions and operators:

Function/Operator Example Decription

get(n) Returns the n’th coordinate (x=0, y=1, z=2)
getX() Returns the x coordinate

getY() Returns the y coordinate

30

getZ() Returns the z coordinate

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors

- Vector(1,2,3)-Vector(2,3,4) Returns the result of a subtraction between
the two vectors

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a number

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product

/ Vector(1,2,3)/2 Divides each coordinate by a factor and
returns the result

X(v) Vector(0,1,0).X(Vector(1,0,0)) | Returns the cross product between two
vectors

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the
other constructor functions described later. You access the entries of the matrix by using its get and
set functions:

.var matrix = Matrix() // Creates an identintity matrix
.eval matrix.set(2,3,100)
.print “Matrix.get(2,3)=" + matrix.get(2,3)

"

.print “The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be
to move the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity
matrix, which is one that leaves the coordinates unchanged. By using the set function you can
construct any matrix you like. However, Kick Assembler has constructor functions that create the
most common transform matrixes:

Function Description

Matrix() Creates an identity matrix.

RotationMatrix(aX,aY¥,aZ) | Creates a rotation matrix where aX, aY and aZ are the angles
rotated around the X, y and z axis. The angles are given in radians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled by sX, the
y-coordinate by sY and the z-coordinate by sZ.
MoveMatrix (mX,mY,mz) Creates a move matrix that moves mX along the x-axis, mY along

the y-axis and mZ along the z-axis.
PerspectiveMatrix(zProj) | Creates a perspective projection where the eye-point is placed in
(0,0,0) and coordinates are projected on the XY-plane where
z=7Pr0j

You can multiply the matrixes and thereby combine their transformations. The transformation is
read from right to left, so if you want to move the space 10 along the x axis and then rotate it 45
degrees around the z-axis, you write:

.var m = RotationMatrix (0,0, toRadians (45)) *MoveMatrix (10,0,0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = m*Vector (10,0,0)
.print “Transformed v=" + v

31

The functions defined on matrixes are the following:

Function/Operator Example Description

get (n, m) Gets the value at n,m

set (n,m, value) Sets the value at n,m

*Vector Matrix()*Vector(1,2,3) | Return the product of the matrix and a vector.
*Matrix Matrix()*Matrix() Returns the product of two matrixes

Here is a little program to illustrate how matrixes can be used. It precalculates an animation of a
cube that rotates around the x,y and z-axis and is projected on the plane where z=2.5. The data is
placed at the label ‘cubeCoords’:

32

.var Cube = List().add(Vector(l,1,1), Vector(l,1,-1), Vector(l,-1,1), Vector(l,-1,-1),
Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

.macro PrecalcObject (object, animLength, nrOfXrot, nrOfYrot, nrOfZrot) ({

// Rotate the coordinate and place the coordinates of each frams in a list
.var frames = List()
.for (var frameNr=0; frameNr<animLength;frameNr++) {
// Set up the transform matrix
.var aX = toRadians (frameNr*360*nrOfXrot/animLength)
.var aY¥ = toRadians (frameNr*360*nrOfYrot/animLength)
.var az toRadians (frameNr*360*nrOfZrot/animLength)
.var zp 2.5 // z-coordinate for the projection plane
.var m = ScaleMatrix(120,120,0)*
PerspectiveMatrix (zp) *
MoveMatrix (0,0, zp+5) *
RotationMatrix (aX,a¥Y,az)

// Transform the coordinates
.var coords = List()
.for (var i=0; i<object.size(); i++) {
.eval coords.add(m*object.get (i))

}

.eval frames.add(coords)

}

// Dump the list to the memory
.for (var coordNr=0; coordNr<object.size(); coordNr++) {
.for (var xy=0;xy<2; xy++) {
.fill animLength, $80+round(frames.get (i) .get (coordNr) .get (xy))

.align $100
cubeCoords: :PrecalcObject (Cube,256,2,-1,1)

9 Testing

The assembler has an .assert directive which makes it easy and quick to test a large number of
expressions. This was mainly made to test the assembler itself. It takes three arguments: A
description, an expression and an expected result.

.assert “2+5*10/2", 2+45*10/2, 27

.assert “2+2", 2+2, 5

.assert *“Vector(l,2,3)+Vector(1,1,1)”, Vector(l,2,3)+Vector(1,1,1),
Vector (2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the
expected result and gives an error if they don’t match:

2+5%10/2=27.0 (27.0)

2+2=4.0 (5.0) —-— ERROR IN ASSERTION!!!
Vector (1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

34

10 Command line options

The command line options for Kick Assembler are:

Option Example Description
-0 -o dots.prg Sets the output file. Default is the input filename with a
‘.prg’ as suffix
-libdir -libdir ../stdLib Defines a library where the assembler will look when it
tries to open external files.
—showmem | —~showmem Show a memory map after assembling
-execute | -—execute x64 Execute a given program with the assembled file as
or argument. You can use this to start a C64 emulator with
;‘Ziiigte “x64 the assembled program if the assembling is successful.
-log -log logfile.txt Prints the output of the assembler to a logfile

35

