
Kick Assembler
Reference Manual

By Mads Nielsen





ii

Table of Contents
1. Introduction ..............................................................................................................................  1
2. Getting Started ..........................................................................................................................  2

2.1. Running the Assembler ....................................................................................................  2
2.2. An Example Interrupt ....................................................................................................... 2
2.3. Configuring the Assembler ................................................................................................ 3

3. Basic Assembler Functionality .....................................................................................................  4
3.1. Mnemonics .....................................................................................................................  4
3.2. Argument Types ..............................................................................................................  4
3.3. Number formats ..............................................................................................................  5
3.4. Labels, Arguments Labels and Multi Labels .........................................................................  6
3.5. Memory Directives ..........................................................................................................  7
3.6. Data Directives ...............................................................................................................  8
3.7. Encoding ........................................................................................................................  9
3.8. Importing source code ....................................................................................................  10
3.9. Importing data ...............................................................................................................  10
3.10. Comments ...................................................................................................................  11
3.11. Console Output ............................................................................................................  11
3.12. Breakpoints and watches ...............................................................................................  12

4. Introducing the Script Language .................................................................................................  14
4.1. Expressions ...................................................................................................................  14
4.2. Variables, Constants and User Defined Labels ....................................................................  14
4.3. Scoping ........................................................................................................................  15
4.4. Numeric Values .............................................................................................................  16
4.5. Parentheses ...................................................................................................................  17
4.6. String Values ................................................................................................................  17
4.7. Char Values ..................................................................................................................  19
4.8. The Math Library ..........................................................................................................  20

5. Branching and Looping .............................................................................................................  22
5.1. Boolean Values .............................................................................................................  22
5.2. The .if directive .............................................................................................................  23
5.3. Question mark if's ..........................................................................................................  23
5.4. The .for directive ...........................................................................................................  24
5.5. The .while directive ........................................................................................................  24
5.6. Optimization Considerations when using Loops ..................................................................  25

6. Data Structures ........................................................................................................................  26
6.1. User Defined Structures ..................................................................................................  26
6.2. List Values ...................................................................................................................  27
6.3. Working with Mutable Values .........................................................................................  28
6.4. Hashtable Values ...........................................................................................................  28

7. Functions and Macros ...............................................................................................................  30
7.1. Functions ...................................................................................................................... 30
7.2. Macros .........................................................................................................................  30
7.3. Pseudo Commands .........................................................................................................  31

8. Preprocessor ............................................................................................................................  34
8.1. Defining preprocessor symbols .........................................................................................  34
8.2. Deciding what gets included ............................................................................................  34
8.3. Importing files ............................................................................................................... 35
8.4. List of preprocessor directives .......................................................................................... 35
8.5. Boolean operators ..........................................................................................................  36

9. Scopes and Namespaces ............................................................................................................  37
9.1. Scopes .........................................................................................................................  37
9.2. Namespaces ..................................................................................................................  37
9.3. Scoping hierarchy ..........................................................................................................  38
9.4. The Namespace Directives ..............................................................................................  38
9.5. Escaping the current scope or namespace ...........................................................................  39



Kick Assembler Manual

iii

9.6. Label Scopes ................................................................................................................. 40
9.7. Accessing Local Labels of Macros and Pseudocommands .....................................................  41
9.8. Accessing Local Labels of For / While loops ......................................................................  42
9.9. Accessing Local Labels of if's .........................................................................................  42

10. Segments ...............................................................................................................................  43
10.1. Introduction .................................................................................................................  43
10.2. Some quick examples ...................................................................................................  43
10.3. Segments ....................................................................................................................  44
10.4. Where did the output go? ..............................................................................................  45
10.5. The Default segment ..................................................................................................... 45
10.6. Naming memory blocks while switching segment ..............................................................  45
10.7. The default memory block .............................................................................................  47
10.8. Including other segments ...............................................................................................  48
10.9. Including .prg files .......................................................................................................  48
10.10. Including sid files .......................................................................................................  48
10.11. Boundaries ................................................................................................................  49
10.12. Overlapping memory block ..........................................................................................  50
10.13. Segment Modifiers .....................................................................................................  50
10.14. Intermediate segments .................................................................................................  51
10.15. The .segmentout directive ............................................................................................  51
10.16. Debugger data ............................................................................................................ 52
10.17. List of segment parameters ..........................................................................................  52

11. PRG files and D64 Disks .........................................................................................................  54
11.1. Introduction .................................................................................................................  54
11.2. Parameter Maps ...........................................................................................................  54
11.3. The File Directive ........................................................................................................  54
11.4. The Disk Directive .......................................................................................................  55
11.5. Disk Parameters ...........................................................................................................  55
11.6. File Parameters ............................................................................................................  56
11.7. Custom Disk Writers ....................................................................................................  57

12. Import and Export ..................................................................................................................  58
12.1. Passing Command Line Arguments to the Script ...............................................................  58
12.2. Import of Binary Files ..................................................................................................  58
12.3. Import of SID Files ......................................................................................................  59
12.4. Converting Graphics .....................................................................................................  62
12.5. Writing to User Defined Files ........................................................................................  63
12.6. Exporting Labels to other Sourcefiles ..............................................................................  63
12.7. Exporting Labels to VICE .............................................................................................  64

13. Modifiers ..............................................................................................................................  65
13.1. Modify Directives ........................................................................................................  65

14. Special Features .....................................................................................................................  66
14.1. Name and path of the sourcefile .....................................................................................  66
14.2. Basic Upstart Program ..................................................................................................  66
14.3. Opcode Constants ........................................................................................................  66
14.4. Colour Constants .......................................................................................................... 67
14.5. Making 3D Calculations ................................................................................................  68

15. Assemble Information .............................................................................................................  71
15.1. The AsmInfo option .....................................................................................................  71
15.2. Realtime feedback from the assembler .............................................................................  72
15.3. The AsmInfo file format ...............................................................................................  72
15.4. The sections ................................................................................................................  73

15.4.1. Libraries section ................................................................................................  73
15.4.2. Directives section ..............................................................................................  73
15.4.3. Preprocessor directives section .............................................................................  73
15.4.4. Files section .....................................................................................................  73
15.4.5. Syntax section ...................................................................................................  74
15.4.6. Errors section ....................................................................................................  74

16. Testing .................................................................................................................................. 75



Kick Assembler Manual

iv

16.1. Asserting expressions ....................................................................................................  75
16.2. Asserting errors in expressions .......................................................................................  75
16.3. Asserting code .............................................................................................................  75
16.4. Asserting errors in code ................................................................................................  76

17. 3rd Party Java plugins .............................................................................................................  77
17.1. The Test Project ..........................................................................................................  77
17.2. Registering your Plugins ...............................................................................................  77
17.3. A quick Example (Macros) ............................................................................................  77
17.4. General Communication interfaces ..................................................................................  78

17.4.1. The IEngine Interface .........................................................................................  79
17.4.2. The IValue Interface ..........................................................................................  79
17.4.3. The ISourceRange Interface ................................................................................. 80
17.4.4. The IMemoryBlock Interface ...............................................................................  80
17.4.5. The IParameterMap Interface ...............................................................................  80

17.5. The Plugins .................................................................................................................  81
17.5.1. Macro Plugins ...................................................................................................  81
17.5.2. Modifier Plugins ................................................................................................  82
17.5.3. SegmentModifier plugins ....................................................................................  82
17.5.4. DiskWriter Plugins ............................................................................................  82
17.5.5. Archive Plugins .................................................................................................  83
17.5.6. AutoIncludeFile Plugins ......................................................................................  84

A. Quick Reference ......................................................................................................................  85
A.1. Command Line Options .................................................................................................  85
A.2. Preprocessor Directives ..................................................................................................  86
A.3. Mnemonics ..................................................................................................................  87

A.3.1. Standard 6502 Mnemonics ...................................................................................  87
A.3.2. Illegal 6502 Mnemonics ......................................................................................  88
A.3.3. DTV .................................................................................................................  89
A.3.4. 65c02 Mnemonics ............................................................................................... 89

A.4. Assembler Directives .....................................................................................................  91
A.5. Value Types .................................................................................................................  93

B. Technical Details .....................................................................................................................  94
B.1. The flexible Parse Algorithm ..........................................................................................  94
B.2. Recording of Side Effects ...............................................................................................  94
B.3. Function Mode and Asm Mode .......................................................................................  94
B.4. Invalid Value Calculations ..............................................................................................  94

C. Going from Version 3.x to 4.0 ...................................................................................................  95
C.1. The new features ...........................................................................................................  95
C.2. Differences in syntax .....................................................................................................  96
C.3. Difference in behavior ...................................................................................................  97
C.4. Converting 3.x sources ...................................................................................................  97



1

Chapter 1
Introduction

Welcome to Kick Assembler, an advanced MOS 65xx assembler combined with a Java Script like script lan-
guage.

The assembler has all the features you would expect of a modern assembler like macros, illegal and DTV op-
codes and commands for unrolling loops. It also has features like pseudo commands, import of SID files, import
of standard graphic formats and support for 3rd party Java plugins. The script language makes it easy to gener-
ate data for your programs. This could be data such as sine waves, coordinates for a vector object, or graphic
converters. Writing small data generating programs directly in you assembler source code is much handier than
writing them in external languages like Java or C++.The script language and the assembler is integrated. Unlike
other solutions, where scripts are prepassed, the script code and the assembler directives works together giving
a more complete solution.

As seen by the size of this manual, Kick Assembler has a lot of functionality. You don't need to know it all to
use the assembler, and getting to know all the features may take some time. If you are new to Kick Assembler, a
good way to start is to read Chapter 2, Getting Started, Chapter 3, Basic Assembler Functionality and Chapter 4,
Introducing the Script Language and then supplement with the features you need. Also notice the quick reference
appendix which contains lists of directives, options and values.

This is the fifth version of Kick Assembler. The first version (1.x) was a normal 6510 cross assembler developed
around 2003 and was never made public. The second version (2.x) was developed in 2006 and combined the
assembler with a script language, giving you the opportunity to write programs that generate data for the assembler
code. Finally in august 2006 the project went public. The third version (3.x) improved the underlying assembling
mechanism using a flexible pass algorithm, recording of side effects and handling of invalid values. This gave
better performance, and made it possible make more advanced feature. The fourth version (4.x) replaced the
parsing mechanism, which where made using a parser generator, with a handwritten one which is faster, more
flexible and included a preprocessor. This made it possible to do new language constructs and have better error
handling. It also replaced the scoping system so it includes all entities, not just symbols. The fifth version (5.x)
added segments which give the opportunity to manage the output of directives and channel it to files, disk images
and other segments.

Through the years the project have grown quite big, with a professional setup including a its own code reposi-
tory, a large automated test suite and automatic building and deploying.

A lot of people have contributed with valuable comments and suggestions by mail and on CSDB. Thanks guys.
Your feedback is greatly appreciated. Also thanks to Gerwin Klein for doing JFlex (the lexical analyser used for
this assembler); Scott Hudson, Frank Flannery and C. Scott Ananian for doing CUP (The parser generator). And
finally, Thanks to XMLMind for sponsoring the project with a pro version of their XML editor in which this
manual is written.

I would like to hear from people that use Kick Assembler so do not hesitate to write your comments to
kickassembler@no.spam.theweb.dk (<- Remove no.spam. for real address).

I wish you happy coding..



2

Chapter 2
Getting Started

This chapter is written to quickly get you started using Kick Assembler. The details of the assembler's func-
tionalities will be presented later.

2.1. Running the Assembler
Kick Assembler run on any platform with Java8.0 or higher installed. Java can be downloaded for free on

Javas website (http://java.com/en/download/index.jsp). To assemble the file myCode.asm simply go to a command
prompt and write:

java –jar kickass.jar myCode.asm

And that's it.

Having problems with Java? Some Windows users found that Java couldn't be reached from the command
prompt after installation. If this is the case you have to insert it in your path environment variable. You can test
it by writing:

java –version

Java will now display the Java version if it's correctly installed.

2.2. An Example Interrupt
Below is a little sample program to quickly get you started using Kick Assembler. It sets up an interrupt, which

play some music. It shows you how to use non-standard features such as comments, how to use macros, how to
include external files and how to use the BasicUpstart2-macro which inserts a basic sys-line to start your program.

This should be enough to get you (kick) started.

BasicUpstart2(start)
//----------------------------------------------------------
//----------------------------------------------------------
//   Simple IRQ
//----------------------------------------------------------
//----------------------------------------------------------
        * = $4000 “Main Program”
start:  lda #$00
        sta $d020
        sta $d021
        lda #$00
        jsr $1000    // init music
        sei
        lda #<irq1
        sta $0314
        lda #>irq1
        sta $0315
        lda #$7f
        sta $dc0d
        sta $dd0d
        lda #$81
        sta $d01a
        lda #$1b
        sta $d011
        lda #$80
        sta $d012
        lda $dc0d
        lda $dd0d

http://java.com/en/download/index.jsp


Getting Started

3

        asl $d019
        cli
        jmp *

//----------------------------------------------------------
irq1:   asl $d019
        SetBorderColor(2)
        jsr $1003    // play music
        SetBorderColor(0)
        jmp $ea81

//----------------------------------------------------------
        *=$1000 “Music”
        .import binary “ode to 64.bin”

//----------------------------------------------------------
// A little macro
.macro SetBorderColor(color) {
        lda #color
        sta $d020
}

2.3. Configuring the Assembler
Kick Assembler has a lot of command line options (a summary is given in Appendix A, Quick Reference).

For example, if you assemble your program with the –showmem option you will get a memorymap shown after
assembling:

java –jar kickass.jar –showmem myCode.asm

By placing a file called KickAss.cfg in the same folder as the KickAss.jar, you can set command line options
that are used at every assembling. Lets say you always wants to have shown a memorymap after assembling and
then have the result executed in the C64 emulator VICE. Then you write the following in the KickAss.cfg file:

-showmem
-execute “c:/c64/winvice/x64.exe –confirmexit”
# This is a comment

(Replace c:/c64/winvice/ with a path that points to the vicefolder on your machine)

All lines starting with # are treated as comments.



4

Chapter 3
Basic Assembler Functionality

This chapter describes the mnemonics and the basic directives that are not related to the script language.

3.1. Mnemonics
In Kick Assembler you can write assembler mnemonics the traditional way:

lda #0
sta $d020
sta $d021

If you want to write several commands on one line then separate them with ; like this:

lda #0; sta $d020; sta $d021

Kick Assembler supports different sets of opcodes. The default set includes the standard 6502 mnemonics plus
the illegal opcodes. To switch between instruction sets of different cpu's use the .cpu directive: The following will
switch to the 65c02 instruction set:

.cpu _65c02

loop:  inc $20
       bra loop   // bra is not present in standard 6502 mnemonics 

Available cpus are:

Table 3.1. CPU's

Name Description

_6502NoIllegals The standard 6502 instruction set.

_6502 The standard 6502 instruction + the illegal opcodes.
This is the default setting for KickAssembler.

dtv The standard 6502 instruction set + the DTV commands.

_65c02 The 65c02 instruction set.

A complete listing of the CPU instructions and their opcodes can be found in the Quick Reference Appendix.

3.2. Argument Types
Kick Assembler uses the traditional notation for addressing modes / argument types:

Table 3.2. Argument Types

Mode Example

No argument nop

Immediate lda #$30

Zeropage lda $30

Zeropage,x lda $30,x



Basic Assembler Functionality

5

Mode Example

Zeropage,y ldx $30,y

Indirect zeropage,x lda ($30,x)

Indirect zeropage,y lda ($30),y

Abolute lda $1000

Absolute,x lda $1000,x

Absolute,y lda $1000,y

Indirect jmp ($1000)

Relative to program counter bne loop

Indirect zeropage (65c02 only) adc ($12)

Zeropage, Relative (65c02 only) bbr1 $12,label

indirect,x (65c02 only) jmp ($1234,x)

An argument is converted to its zeropage mode if possible. This means that lda $0030 will generate an lda
command in its zeropage mode1

You can force the assembler to use the absolute form of the mnemonic by appending .a or .abs. The same way
you can tell the assembler to use zeropage mode when it would otherwise use an absolute mode.

lda.abs $0040,x   // Uses absolute mode
lda.a $0030,x     // Same as abs (abbreviation)  
stx.zp zpLabel,y  // Uses zeropage mode
stx.z zpLabel,y   // Same as zp (abbreviation)
.label zpLabel = $10

jmp.z $1000 // Modifies nothing, jmp don't have any zp mode

With the following extensions you can force specific modes. The are deprecated and only kept for backward
compatibility:

Table 3.3. Deprecated Mnemonic Extensions

Ext Mode Example

im, imm Immediate

z, zp Zeropage ldx.z $1234

zx, zpx Zeropage,x lda.zpx table

zy, zpy Zeropage,y

izx, izpx Indirect zeropage,x

izy, izpy Indirect zeropage,y

ax, absx Absolute,x lda.absx $1234

ay, absy Absolute,y

I, ind Indirect jmp.i $1000

r, rel Relative to program counter

3.3. Number formats
Kick Assembler supports the standard number formats:

1If the argument is unknown (eg. an unresolved label) in the first pass, the assembler will assume it’s a 16 bit value



Basic Assembler Functionality

6

Table 3.4. Number formats

Prefix Format Example

Decimal lda #42

$ Hexadecimal lda #$2a, lda #$ff

% Binary lda #%101010

3.4. Labels, Arguments Labels and Multi Labels
Label declarations in Kick Assembler end with ‘:’ and have no postfix when referred to, as shown in the

following program:

loop:   inc $d020
        inc $d021
        jmp loop

You can put labels in front of mnemonic arguments. This can be useful when creating self modifying code:

        stx tmpX
        ...
        ldx tmpX:#$00

Kick Assembler also supports multi labels, which are labels that can be declared more than once. These are
useful to prevent name conflicts between labels. A multi label starts with a ‘!’ and when your reference it you have
to end with a ‘+’ to refer to the next multi label or ‘-‘ to refer to the previous multi label:

        ldx #100
!loop:  inc $d020
        dex
        bne !loop- // Jumps to the previous instance of !loop

        ldx #100
!loop:  inc $d021
        dex
        bne !loop- // Jumps to the previous instance of !loop

or

        ldx #10
!loop:
        jmp !+ // Jumps over the two next nops to the ! label
        nop
        nop
!:      jmp !+ // Jumps over the two next nops to the ! label
        nop
        nop
!:
        dex
        bne !loop- // Jumps to the previous !loop label

Applying more than one '+' or '-' will skip labels. E.g. '+++' will jump to the third label:

        jmp !+++ // Jumps to the third '!' label
!:      nop
!:      nop
!:              // <- here! 

Another way to avoid conflicting variables is to use user defined scopes, which are explained in the scoping
section of Chapter 4, Introducing the Script Language.



Basic Assembler Functionality

7

A ‘*’ returns the value of the current memory location so instead of using labels you can write your jumps
like this:

// Jumps with '*'
        jmp *

        inc $d020
        inc $d021
        jmp *-6

// The same jumps with labels
this:   jmp this

!loop:  inc $d020
        inc $d021
        jmp !loop-

When referencing a label that is not yet resolved, the assembler will assume a two byte address, even though it
later is found to be in the zeropage. You can mark labels as being in the zeropage with the .zp directive:

        // Uses zeropage form of lda and sta eventhough the labels is first 
        // resolved later
        lda zpReg1
        sta zpReg2

*=$10 virtual 
.zp {
zpReg1: .byte 0
zpReg2: .byte 0
}

Note: Currently the .zp directive doesn't handle macros and pseudocommands called within the {}. Labels
inside these will be in the form defined in the macro.

3.5. Memory Directives
The * directive is used to set the program counter. A program should always start with a * directive to tell the

assembler where to put the output. Here are some examples of use:

        *=$1000 "Program"
        ldx #10
!loop:  dex
        bne !loop-
        rts

        *=$4000 "Data"
        .byte 1,0,2,0,3,0,4,0

        *=$5000 "More data"
        .text "Hello"

Note: The old notation ('.pc=$1000') from Kick Assembler 2.x and 3.x is still supported.

The last argument is optional and is used to name the memory block created by the directive. When using the
‘-showmem’ option when running the assembler a memory map will be generated that displays the memory usage
and block names. The map of the above program looks like this:

Memory Map
----------
$1000-$1005 Program
$4000-$4007 Data
$5000-$5004 More data



Basic Assembler Functionality

8

By using the virtual option on the .pc directive you can declare a memory block that is not saved in the resulting
file.

        *=$0400 "Data Tables 1" virtual
table1: .fill $100,0
table2: .fill $100,0

        *=$0400 "Data Tables 2" virtual
table3: .fill $150,0
table4: .fill $100,0

        *=$1000 "Program"
        ldx #0
        lda table1,x
        …

Note that virtual memory blocks can overlap other memory blocks. They are marked with an asterisk in the
memory map.

Memory Map
----------
*$0400-$05ff Data Tables 1
*$0400-$064f Data Tables 2
$1000-$1005 Program

Since virtual memory blocks aren’t saved, the above example will only save the memory from $1000 to $1005.

With the .align directive, you can align the program counter to a given interval. This is useful for optimizing
your code as crossing a memory page boundary yields a penalty of one cycle for memory referring commands.
To avoid this, use the .align command to align your tables:

        *=$1000 "Program"
        ldx #1
        lda data,x
        rts

        *=$10ff       //Bad place for the data
        .align $100   //Alignment to the nearest page boundary saves a cycle
data:   .byte 1,2,3,4,5,6,7,8

In case you want your code placed at position $1000 in the memory but want it assembled like it was placed
at $2000, you can use the .pseudopc directive:

        *=$1000 "Program to be relocated at $2000"
.pseudopc $2000 {
loop:   inc $d020
        jmp loop  // Will produce jmp $2000 instead of jmp $1000
}

3.6. Data Directives
The .byte, .word, .dword and .text directives are used to generate byte, word (one word= two bytes), dword

(double word = 4 bytes) and text data as in standard 65xx assemblers.

.byte 1,2,3,4      // Generates the bytes 1,2,3,4

.word $2000,$1234  // Generates the bytes $00,$20,$34,$12

.dword $12341234   // Generates the bytes $34,$12,$34,$12

.text "Hello World"

You can use .by, .wo and .dw as aliases for .byte, .word and .dword, so '.by $10' is the same as '.byte $10'.

With the .fill directive you can fill a section of the memory with bytes. It works like a loop and automatically
sets the variable i to the iteration number.



Basic Assembler Functionality

9

// Nomal filling
.fill 5, 0 // Generates byte 0,0,0,0,0
.fill 5, i // Generates byte 0,1,2,3,4
.fill 256, 127.5 + 127.5*sin(toRadians(i*360/256)) // Generates a sine curve

// Use [,,] to fill with a repeat pattern
.fill 4, [$10,$20]             // Generates .byte $10,$20,$10,$20,$10,$20,$10,$20
.fill 3, ['D','E','M','O','!'] // Generates the same bytes as .text "DEMO!DEMO!
DEMO!"
.fill 3, [i,i*$10]             // Generates .byte 0,0,1,$10,2,$20

// .fillword is like .fill but with .word directives 
.fillword 5,i*$80      // Generates .word $0000,$0080,$0100,$0180,$0200
.fillword 2,[$100,0]   // Generates .word $0100,$0000,$0100,$0000

In most cases it is more desirable to have two lists, one with low byte and one with high byte, than a word list.
To generate this you can use the .lohifill directive. It generates the two list right after each each other and lets your
access them using a hi/lo field on a connected label like this:

       ldx #20   // ychar coord
       ldy #15   // xchar coord
       clc
       lda mul40.lo,x  // Access lo byte table
       sta $fe
       lda mul40.hi,x  // Access hi byte table
       ora #$04
       sta $ff
       lda #'x'
       sta ($fe),y     // Draws 'x' at screenpos x,y
       rts

mul40: .lohifill $100, 40*i    // Generates lo/hi table: 
                               // .byte <0, <40, <80, <120, ....
                               // .byte >0, >40, >80, >120, ....

Generating bytes using the fill directive will compile faster than generating byte using the .for and .byte direc-
tives. (The .for directive will be explained later.)

3.7. Encoding
The .text directive outputs bytes to the memory that represents the given textstring. The default encoding is

'screencode_mixed', which maps to the screencode representations of the charset with both uppercase and lower-
case letters. To change the encoding, use the .encoding directive:

// How to use encoding
.encoding "screencode_upper"
.text "THIS IS WRITTEN IN THE UPPERCASE SINCE LOWERCASE CHARS ARE USE FOR GFX
 SIGNS"

.encoding "screencode_mixed"

.text "In this ENCODING we have both UPPER and lower case chars."

.text "Remember to swith to a charset that fits the encoding."

The encoding affects every operation that converts characters in the sourcecode to byte values, for instance the
'.import text' directive is also affected.



Basic Assembler Functionality

10

The supported encodings are:

Table 3.5. Encodings

Name Description

petscii_mixed The petscii representation of the charset with both upper
and lower case characters.

petscii_upper The petscii representation of the charset with upper case
and graphics characters.

screencode_mixed The screencode representation of petscii_mixed

screencode_upper The screencode representation of petscii_upper

3.8. Importing source code
Use the preprocessor to import other source files.

// Import the file "mylibrary.asm"
#import "MyLibrary.asm"  

// Only import "UpstartCode.asm" if STAND_ALONE is defined
#importif STAND_ALONE "UpstartCode.asm"

Note that preprocessor commands starts with #. Refer to the chapter on the preprocessor for a detailed descrip-
tion.

When Kick Assembler searches for a file, it first look in the current directory. Afterwards it looks in the direc-
tories supplied by the ‘-libdir’ parameter when running the assembler. This enables you to create standard libraries
for files you use in several different sources. A command line could look like this:

java –jar kickass.jar myProgram.asm –libdir ..\music –libdir c:\code\stdlib

If you build source code libraries you might want to ensure that the library is only included once in your code.
This can be done by placing a #importonce directive in the top of the library file:

File1.asm:
#importonce
.print "This will only be printed once!"

File2.asm:
#import "File1.asm" // This will import File1
#import "File1.asm" // This will not import anything

NOTE! The v3.x directives for importing source files using the import directive (.import source "myfile.asm"
and .importonce), not the preprocessor, is still supported. But its recommended to use the preprocessor directives,
since they will give a more natural order of evaluation. Using the preprocessor will import the source at once while
using the old import directive will first parse the entire file, and then import external files during evaluation.

3.9. Importing data
With the .import directive you can import data from external files into your code. You can import binary, C64,

and text files:

// import the bytes from the file 'music.bin'
.import binary "Music.bin"

// Import the bytes from the c64 file 'charset.c64'
// (Same as binary but skips the first two address bytes) 
.import c64 "charset.c64"



Basic Assembler Functionality

11

// Import the chars from the text file
// (Converts the bytes as a .text directive would do)
.import text "scroll.txt"

The binary, c64 and text import takes an offset and a length as optional parameters:

// import the bytes from the file 'music.bin', but skip the first 100 bytes
.import binary "Music.bin", 100

// Imports $200 bytes starting from position $402 (the two extra bytes is because
 its a c64 file)  
.import c64 "charset.c64", $400, $200

As when importing sources files, the import directive also searches the folders given by the –libdir option when
looking for a file.

3.10. Comments
Comments are pieces of the program that are ignored by the assembler. Kick Assembler supports line and block

comments known from languages such as C++ and Java. When the assembler sees ‘//’ it ignores the rest of that
line. C block comments ignores everything between /* and */.

/*----------------------------------------------------------
This little program is made to demonstrate comments
------------------------------------------------------------*/
        lda #10
        sta $d020  // This is also a comment 
        sta /* Comments can be placed anywhere */ $d021
        rts

Traditional 65xx assembler line comments (;) are not supported since the semicolon is used in for-loops in the
script language.

3.11. Console Output
With the .print directive you can output text to the user while assembling. For example:

.print "Hello world"

.var x=2

.print "x="+x

This will give the following output from the assembler:

parsing
flex pass 1
Output pass
  Hello world
  x=2.0

Notice that the output is given during the output pass. You can also print the output immediately with the .print-
now command. This is useful for debugging script where errors prevent the execution of the output pass. The .print-
now command will print the output in each pass, and in some passes the output might be incomplete due to lack
of information. In the following example we print a label that isn't resolved in the first pass:

.printnow "loop=$" + toHexString(loop)

      *=$1000
loop: jmp loop 

This will give the following output:



Basic Assembler Functionality

12

parsing
flex pass 1
   loop=$<<Invalid String>>
flex pass 2
   loop=$1000
Output pass

If you detect an error while assembling, you can use the .error directive to terminate the assembling and display
an error message:

.var width = 45

.if (width>40) .error "width can’t be higher than 40"

Another way of writing this is to use the .errorif directive that takes a boolean expression and a message text.
An error is raised if the boolean expression is evaluated to true:

.var width = 45

.errorif with>40, "width can’t be higher than 40"

This is more flexible since it standard .if's has to be decided in the first pass which will give an (unwanted)
error if you for example compare not yet resolved labels. If you for instance want to check for a page boundary
crossing you can do like this:

    beq label1
    .errorif (>*) != (>label1), "Page crossed!"
    nop
    nop
label1:

3.12. Breakpoints and watches
Breakpoints and watches changes nothing in the code. They add debug information to emulators/debuggers.

Currently this means adding info to the vice symbol file or the DebugDump file (C64Debugger).

You can set breakpoints in your code with the .break directive:

    // Example 1
    ldy #10
loop:
    .break         // This will put a breakpoint on 'inc $d020'
    inc $d020
    dey
    .break "if y<5" // This will add a string as argument for the breakpoint
    bne loop 

    // Example 2 
    lda #10
    .break     // Will place a breakpoint at the first nop in the macro
    MyMacro()  

.macro MyMacro() {
    nop
    nop
    nop
}

The .break directive puts a breakpoint on the current memory position. As seen in the second breakpoint, you
can add an argument to a breakpoint. The syntax of this is dependant on the consumer. The above case (.break "if
y<5") is written for VICE's conditional expressions. VICE will then break if the y register is below 5.



Basic Assembler Functionality

13

Watches are defined like this

.watch $d018           // Watches $d018

.watch xpos+1          // Watches the address xpos+1

.watch $d000,$d00f     // Watches the range $d000-$d00f

.watch xpos,xpos+10,"store"   // Watches a range with the additional parameter
 "store" 
.watch count,,"hex8"   // you can leave the second argument empty  

First argument is the address. If second argument is given its the range between the two. Third argument is
an optional text string with additional information. Consult your emulater/debugger manual for possible content
of third argument.



14

Chapter 4
Introducing the Script Language

In this chapter the basics of the script language is introduced. We will focus on how Kick Assembler evaluates
expressions, the standard values and libraries. Later chapters will deal with more advanced areas.

4.1. Expressions
Kick assembler has a built in mechanism for evaluating expressions. An example of an expression is 25+2*3/

x. Expressions can be used in many different contexts, for example to calculate the value of a variable or to define
a byte:

        lda #25+2*3/x
        .byte 25+2*3/x

Standard assemblers can only calculate expressions based on numbers, while Kick Assembler can evaluate
expressions based on many different types like: Numbers, Booleans, Strings, Lists, Vectors, and Matrixes. So, if
you want to calculate an argument based on the second value in a list you write:

        lda #35+myList.get(1) // 1 because first element is number 0 

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

        lda #35+myVector.getX()

Or perhaps on the basis of the x-coordinate on the third vector in a list:

        lda #35+myVectorList.get(2).getX()

I think you get the idea by now. Kick Assembler's evaluation mechanism is much like those in modern pro-
gramming languages. It has a kind of object oriented approach, so calling a function on a value(/object) executes
a function specially connected to the value. Operators like +, -,*, /, ==, !=, etc., are seen as functions and are also
specially defined for each type of value.

In the following chapters, a detailed description of how to use the value types and functions in Kick Assembler
will be presented.

4.2. Variables, Constants and User Defined Labels
With variables you can store data for later use. Before you can use a variable you have to declare it. You do

this with the .var directive:

        .var x=25
        lda #x    // Gives lda #25

If you want to change x later on you write:

        .eval x=x+10
        lda #x    // Gives lda #35

This will increase x by 10. The .eval directive is used to make Kick Assembler evaluate expressions. In fact,
the .var directive above is just a convenient shorthand of ‘.eval var x =25’, where ‘var’ is subexpression that
declares a variable (this will come in handy later when we want to define variables in for-loops).

Other shorthands exist. The operators ++, --, +=, -=, *= and /= will automatically call a referenced variable
with +1,-1, +y, -y, *y and /y. For example:



Introducing the Script Language

15

        .var x = 0
        .eval x++    // Gives x=x+1
        .eval x--    // Gives x=x-1
        .eval x+=3   // Gives x=x+3
        .eval x-=7   // Gives x=x-7
        .eval x*=3   // Gives x=x*3
        .eval x/=2   // Gives x=x/2

Experienced users of modern programming languages will know that assignments return a value, e.g. x = y =
z = 25 first assigns 25 to z, which returns 25 that is assigned to y, which returns 25 that is assigned to x. Kick
Assembler supports this as well. Notice that the ++ and -- works as real ++ and –- postfix operators, which means
that they return the original value and not the new (Ex: .eval x=0 .eval y=x++, will set x to 1 and y to 0)

You can also declare constants:

.const c=1              // Declares the constant c to be 1

.const name = "Camelot" // Constants can assume any value, for example string

A constant can't be assigned a new value, so .eval pi=22 will generate an error. Note that not all values are
immutable. If you define a constant that points to a list, the content of the list can still change. If you want to make
a mutable value immutable, you can use its lock() function, which will lock it's content:

.const immutableList = List().add(1,2,3).lock()

After this you will get an error if you try to add an element or modify existing elements.

With the .enum statement you can define enumerations, which are series of constants:

.enum {singleColor, multiColor}      // Defines singleColor=0, multiColor=1

.enum {effect1=1,effect2=2,end=$ff}  // Assigns values explicitly 

.enum {up,down,left,right, none=$ff} // You can mix implicit and explicit 
                                     // assignment of values

Variables and constants can only be seen after they are declared while labels can be seen in the entire scope.
You can define a label with the .label directive like you define variables and constants:

        // This fails
        inc myLabel1
        .const myLabel1 = $d020

        // This is ok
        inc myLabel2
        .label myLabel2 = $d020

4.3. Scoping
You can limit the scope of your variables and labels by defining a user defined scope. This is done by {..}.

Everything between the brackets is defined in a local scope and can't be seen from the outside.

Function1: {
        .var length = 10
        ldx #0
        lda #0
loop:   sta table1,x
        inx
        cpx #length
        bne loop
}

Function2: {
        .var length = 20 // doesn’t collide with the previous ‘length’



Introducing the Script Language

16

        ldx #0
        lda #0
loop:   sta table2,x     // the label doesn’t collide with the previous ‘loop’ 
        inx
        cpx #length
        bne loop
}

Scopes can be nested as many times as you wish as demonstrated by the following program:

.var x = 10
{
    .var x=20
    {
        .print "X in 2nd level scope read from 3rd level scope is " + x 
        .var x=30
        .print "X in 3rd level scope is " + x 
    }
    .print "X in 2nd level scope is " + x 
}
.print "X in first level scope is " + x

The output of this is:

X in 2nd level scope read from 3rd level scope is 20.0
X in 3rd level scope is 30.0
X in 2nd level scope is 20.0
X in first level scope is 10.0

4.4. Numeric Values
Numeric values are numbers, covering both integers and floats. Standard numerical operators (+,-,*, and /) work

as in standard programming languages. You can combine them with each other and they will obey the standard
precedence rules. Here are some examples:

25+3
5+2.5*3-10/2
charmem + y * $100

In practical use they can look like this:

.var charmem = $0400
        ldx #0
        lda #0
loop:   sta charmem + 0*$100,x
        sta charmem + 1*$100,x
        sta charmem + 2*$100,x
        sta charmem + 3*$100,x
        inx
        bne loop

You can also use bitwise operators to perform and, or, exclusive or, and bit shifting operations.

        .var x=$12345678
        .word x & $00ff, [x>>16] & $00ff // gives .word $0078, $0034

Special for 65xx assemblers are the high and low-byte operators (>,<) that are typically used like this:

        lda #<interrupt1   // Takes the lowbyte of the interupt1 value      
        sta $0314
        lda #>interrupt1   // Takes the high byte of the interupt1 value
        sta $0315



Introducing the Script Language

17

Table 4.1. Numeric Values

Name Operator Examples Description

Unary minus - Inverts the sign of a num-
ber.

Plus + 10+2 = 12 Adds two numbers.

Minus - 10-8=2 Subtracts two numbers.

Multiply * 2*3 =6 Multiply two numbers.

Divide / 10/2 = 5 Divides two numbers.

High byte > >$1020 = $10 Returns the second byte of
a number.

Low byte < <$1020 = $20 Returns the first byte of a
number.

Bitshift left << 2<<2 = 8 Shifts the bits by a giv-
en number of spaces to the
left.

Bitshift right >> 2>>1=1 Shifts the bits by a giv-
en number of spaces to the
right.

Bitwise and & $3f & $0f = $f Performs bitwise and be-
tween two numbers.

Bitwise or | $0f | $30 = $3f Performs a bitwise or be-
tween two numbers.

Bitwise eor ^ $ff ^ $f0 = $0f Performs a bitwise exclu-
sive or between two num-
bers.

Bitwise not ~ ~%11 = %...11111100 Performs bitwise negation
of the bits.

You can get the number representation of an arbitrary value by using the general .number() function. Eg.

        .print ‘x’.number()

4.5. Parentheses
You can use both soft parentheses () and har parentheses [] to tell the order of evaluation.

        lda #2+5*2    // gives lda #12
        lda #(2+5)*2  // gives lda #14
        lda #[2+5]*2  // gives lda #14

Note that 65xx assemblers use soft parenthesis to signal an indirect addressing mode:

        jmp ($1000)    // Creates a jmp indirect command 
        jmp [$1000]    // Creates a jmp absolute command 

You can nest as many parentheses as you want, so (([((2+4))])*3)+25.5 is a legal expression.

4.6. String Values
Strings are used to contain text. You can define a plain strings or escape code strings like this:



Introducing the Script Language

18

        // Plain strings
        .var message = "Hello World"
        .text message                         // Gives .text "Hello world" 
        .const file="c:\newstuff"

        // String with escape codes ('\esc') start with @
        .print @"First line.\nSecond line."   // Using newline 
        .print @“He said: \"Hello World\""    // Using " inside the string

        .text @"This text will loop now\$ff"  // placing hex values ($ff) in the
 text
 

@ in front of a string means you can use escape characters. Notice how '\n' in "c:\newstuff" is not a newline
while '\n' in @"First line.\nSecond line." is. (Note: This is the opposite of C# and is this way to avoid breaking
file references in old sources).

The supported escape codes are:

Table 4.2. Escape codes

Code Example Description

\b @"\b" Backspace

\f @"\f" Form feed

\n @"Line1\nLine2" Newline

\r @"\r" Carriage return

\t .print @"Hello\tWorld" Tab

\\ @"c:\\tmp\\myfile.txt” Backslash

\" @"It's called \"Bodiam Castle\"" Double quotes

\$ @"Hello world\$ff" Two digit hex values

Every object has a string representation and you can concatenate strings with the + operator. For example:

.var x=25

.var myString= “X is “ + x    // Gives myString = "X is 25"

You can use the .print directive to print a string to the console while assembling. This is useful when debugging.
Printing x and y can be done like this:

        .print "x="+x 
        .print "y="+y

You can also print labels to see which location they refer to. If you do this, it's best to convert the label value
to hexadecimal notation first:

        .print “int1=$”+toHexString(int1) 

int1:   sta regA+1
        stx regX+1
        sty regY+1
        lsr $d019
        // Etc.

Here is a list of functions/operators defined on strings:



Introducing the Script Language

19

Table 4.3. String Values

Function/Operator Description

+ Appends two strings.

asBoolean() Converts the string to a boolean value (eg,
“true”.asBoolean()).

asNumber() Converts the string to a number value. Ex, “35”.asNum-
ber().

asNumber(radix) Converts the string to a number value with the
given radix (16=hexadecimal, 2=binary etc.). Ex,
“f”.asNumber(16) will return 15.

charAt(n) Returns the character at position n.

size() Returns the number of characters in the string.

substring(i1,i2) Returns the substring beginning at i1 and ending at i2
(char at i2 not included).

toLowerCase() Return the lower version of the string.

toUpperCase() Return the uppercase version of the string.

Here are the functions that take a number value and convert it to a string:

Table 4.4. Numbers to Strings

Function Description

toIntString(x) Return x as an integer string (eg x=16.0 will return
“16”).

toIntString(x,minSize) Return x as an integer string space-padded to reach the
given minsize. (eg toIntString(16,5) will return “ 16”).

toBinaryString(x) Return x as a binary string (eg x=16.0 will return
“10000”).

toBinaryString(x,minSize) Return x as a binary string zero-padded to reach the
given minSize (eg toBinaryString(16,8) will return
“00010000”).

toOctalString(x) Return x as an octal string (eg x=16.0 will return “20”).

toOctalString(x,minSize) Return x as an octal string zero-padded to reach the
given minSize (eg toBinaryString(16,4) will return
“0020”).

toHexString(x) Return x as a hexadecimal string (eg x=16.0 will return
“10”).

toHexString(x,minSize) Return x as an hexadecimal string zero-padded to reach
the given minSize (eg toBinaryString(16,4) will return
“0010”).

You can get the string representation of an arbitrary value by using the general .string() function. Eg.

        .print 1234.string().charAt(2)    // Prints 3

4.7. Char Values
Char values, or characters, are used like this:



Introducing the Script Language

20

        lda #'H'
        sta $0400
        lda #'i'
        sta $0401

        lda #"?!#".charAt(1)
        sta $0402

        .byte 'H','e','l','l','o',' '
        .text "World"+'!'

In the above example, chars are used in two ways. In the first examples their numeric representation are used
as arguments to the lda commands and in the final example, '!'s string representation is appended to the "World"
string.

Char values is a subclass of number values, which means that it has all the functions that are placed on the
number values, so you can do stuff like.

        lda #’H’+1 // Same as lda #’I’
        sta $0400
        lda #’A’+1 // Same as lda #’B’
        sta $0401
        lda #’L’+1 // Same as lda #’M’
        sta $0402

4.8. The Math Library
Kick Assembler's math library is built upon the Java math library. This means that nearly every constant and

command in Java's math library is available in Kick Assembler. Here is a list of available constants and commands.
For further explanation consult the Java documentation at Suns homepage. The only non Java math library function
is mod (modulo).

Table 4.5. Math Constants

Constant Value

PI 3.141592653589793

E 2.718281828459045

Table 4.6. Math Functions

Function Description

abs(x) Returns the absolute (positive) value of x.

acos(x) Returns the arc cosine of x.

asin(x) Returns the arc sine of x.

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the
positive x-axis. Useful when converting to polar coor-
dinates.

cbrt(x) Returns the cube root of x.

ceil(x) Rounds up to the nearest integer.

cos(r) Returns the cosine of r.

cosh(x) Returns the hyperbolic cosine of r.

exp(x) Returns ex.

expm1(x) Returns ex-1.



Introducing the Script Language

21

Function Description

floor(x) Rounds down to the nearest integer.

hypot(a,b) Returns sqrt(x2+y2).

IEEEremainder(x,y) Returns the remainder of the two numbers as described
in the IEEE 754 standard.

log(x) Returns the natural logarithm of x.

log10(x) Returns the base 10 logarithm of x.

log1p(x) Returns log(x+1).

max(x,y) Returns the highest number of x and y.

min(x,y) Returns the smallest number of x and y.

mod(a,b) Converts a and b to integers and returns the remainder
of a/b.

pow(x,y) Returns x raised to the power of y.

random() Returns a random number x where 0 ≤ x < 1.

round(x) Rounds x to the nearest integer.

signum(x) Returns 1 if x>0, -1 if x<0 and 0 if x=0.

sin(r) Returns the sine of r.

sinh(x) Returns the hyperbolic sine of x.

sqrt(x) Returns the square root of x.

tan(r) Returns the tangent of r.

tanh(x) Returns the hyperbolic tangent of x.

toDegrees(r) Converts a radian angle to degrees.

toRadians(d) Converts a degree angle to radians.

Here are some examples of use.

        // Load a with a random number
        lda #random()*256

        // Generate a sine curve
        .fill 256,round(127.5+127.5*sin(toRadians(i*360/256)))



22

Chapter 5
Branching and Looping

Kick Assembler has control directives that let you put conditions on when a directive is executed and how
many time it is executed. These are explained in this chapter.

5.1. Boolean Values
The conditions for control directives are given by Boolean values, which are values that can be true or false.

They are generated and used as in programming languages like Java and C#. The following are examples of
boolean variables:

.var myBoolean1 = true    // Set the variable to true  

.var myBoolean2 = false   // Set the variable to false

.var fourHigherThanFive = 4>5 // Sets fourHigherThanFive = false

.var aEqualsB = a==b    // Sets true if a is the same as b

.var xNot10 = x!=10     // Sets true if x doesn’t equal 10

Here is the standard set of operators for generating Booleans:

Table 5.1. Boolean generating Functions

Name Operator Example Description

Equal == a==b Returns true if a equals b,
otherwise false.

Not Equal != a!=b Returns true if a doesn't
equal b, otherwise false.

Greater > a>b Returns true if a is greater
than b, otherwise false.

Less < a<b Returns true if a is less than
b, otherwise false.

Greater than >= a>=b Returns true if a is greater
than or equal to b, other-
wise false.

Less than <= a<=b Returns true if a is less or
equal to b, otherwise false.

All the operators are defined for numeric values, other values have defined a subset of the above. E.g. you can't
say that one boolean is greater than another, but you can see if they have the same values:

.var b1 = true==true    // Sets b1 to true

.var b2 = true!=(10<20) // Sets b2 to false

Boolean values have a set of operators assigned. These are the following:

Table 5.2. Boolean Operators

Name Operator Example Description

Not ! !a Returns true if a is false,
otherwise false.

And && a&&b Returns true if a and b are
true, otherwise false.



Branching and Looping

23

Name Operator Example Description

Or || A||b Returns true if a or b are
true, otherwise false.

And are used like this:

.var allTrue = 10HigherThan100 && aEqualsB // Is true if the two boolean
                                           // arguments are true.

Like in languages like C++ or Java, the && and || operators are short circuited. This means that if the first
argument of an && operator is false, then the second argument won't be evaluated since the result can only be
false. The same happens if the first argument of an || operator is true.

5.2. The .if directive
If-directives work like in standard programming languages. With an .if directive you have the proceeding di-

rective executed only if a given boolean expression is evaluated to true. Here are some examples:

// Set x to 10 if x is higher that 10
.if (x>10) .eval x=10     

// Only show rastertime if the ‘showRasterTime’ boolean is true
.var showRasterTime = false
.if (showRasterTime) inc $d020
jsr PlayMusic
.if (showRasterTime) dec $d020

You can group several statements together in a block with {…} and have them executed together if the boolean
expression is true:

// If IrqNr is 3 then play the music
.if (irqNr==3) {
    inc $d020
    jsr music+3
    dec $d020
}

By adding an else statement you can have an expression executed if the boolean expression is false:

// Add the x’th entry of a table if x is positive or 
// subtract it if x is negative
.if (x>=0) adc zpXtable+x else sbc zpXtable+abs(x)

// Init an offset table or display a warning if the table length is exceeded
.if (i<tableLength) {
   lda #0
   sta offset1+i
   sta offset2+i
} else {
   .error "Error!! I is too high!"
}

5.3. Question mark if's
As known from languages like Java and C++ you can use the write compact if expression in the following form:

    condition ? trueExpr : falseExpr

Some examples of use:



Branching and Looping

24

.var x= true ? "hello" : "goodbye"   // Sets x = "hello" 

.var y= [20<10] ? 1 : 2              // Sets y=2

.var max = a>b ? a:b

.var debug=true
inc debug ? $d020:$d013  // Increases $d020 since debug=true

.var boolean = max(x,minLimit==null?0:minLimit) // Takes care of null limit

5.4. The .for directive
With the .for directive you can generate loops as in modern programming languages. The .for directive takes

an init expression list, a boolean expression, and an iteration list separated by a semicolon. The last two arguments
and the body are executed as long as the boolean expression evaluates to true.

// Prints the numbers from 0 to 9
.for(var i=0;i<10;i++)  .print "Number " + i  

// Make data for a sine wave
.for(var i=0;i<256;i++) .byte round(127.5+127.5*sin(toRadians(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions separated by
comma:

// Print the numbers from 0 to 9
.var i=0
.for (;i<10;) {
    .print i
    .eval i++
}

// Sum the numbers from 0 to 9 and print the sum at each step
.for(var i=0, var sum=0;i<10;sum=sum+i,i++)  
    .print “The sum at step “ + I “ is “ + sum

With the for loop you can quickly generate tables and unroll loops. You can, for example, do a classic ‘blitter
fill’ routine like this:

.var blitterBuffer=$3000

.var charset=$3800

.for (x=0;x<16;x++) {
    .for(var y=0;y<128;y++) {
        if (var y=0)  lda blitterBuffer+x*128+y
        else          eor blitterBuffer+x*128+y
        sta charset+x*128+y
    }
}

5.5. The .while directive
The .while directive executes as long as a given expressions is true. That is, it works like a .for-loop but without

the init and iteration parameters:

// Print the numbers from 0 to 9
.var i=0
.while(i<10) {    
    .print i;
    .eval i++; 
}



Branching and Looping

25

5.6. Optimization Considerations when using Loops
Here is a tip if you want to optimize your assembling. Kick assembler has two modes of executing directives.

‘Function Mode’ is used when the directive is placed inside a function or define directive, otherwise ‘Asm Mode’ is
used. ‘Function Mode’ is executed fast but is restricted to script commands only (.var, .const, .for, etc.), while ‘Asm
Mode’ remembers intermediate results so the assembler won't have to make the same calculations in succeeding
passes.

If you make heavy calculations and get slow performance or lack of memory, then place your for loops inside
a define directive or inside a function. No time or memory will be wasted to record intermediate results, and the
define directive or the directive that called the function, will remember the result in the succeeding passes.

Read more about the define directive in the section ‘Working with mutable values’.



26

Chapter 6
Data Structures

In the chapter, we will examine user defined data and predefined structures.

6.1. User Defined Structures
It's possible to define your own structures. A structure is a collection of variables like for example a point that

consist of an x and a y coordinate:

// Define a point structure
.struct Point {x,y}

// Create a point with x=1 and y=2 and print it
.var p1 = Point(1,2)
.print ”p1.x=” + p1.x
.print ”p1.y=” + p1.y

// Create a point with the default contructor and modify its arguments
.var p2 = Point()
.eval p2.x =3
.eval p2.y =4

You define a structure with the .struct directive. The above structure has the name ‘Point’ and consists of the
variables x and y. To create an instance of the structure, you use its name as a function. You can either supply
no arguments or give the init values of all the variables. You use the values generated by structures as any other
variables, ex:

        lda #0
        ldy #p1.y
        sta charset+(p1.x>>3)*height,y

You can get access to informations about the struct and access the fields in a more generic way by using the
struct’s functions:

.struct Person{firstName,lastName}

.var p1 = Person(“Peter”,”Schmeichel”)

.print p1.getStructName()        // Prints ‘Person’ 

.print p1.getNoOfFields()        // Prints ‘2’

.print p1.getFieldNames().get(0) // Prints ‘firstName’

.eval p1.set(0,”Kasper”)         // Sets firstName to Kasper 

.print p1.get(“lastName”)        // Prints “Schmeichel”

// Copy values from one struct to another
.var p2 = Person()
.for (var i=0; i<p1.getNoOfFields(); i++) 
    .eval p2.set(i,p1.get(i))

// Print the content of a struct: 
//   firstName = Casper
//   lastName = Schmeichel
.for (var i=0; i<p1.getNoOfFields(); i++) {
    .print p1.getFieldNames().get(i) + “ = “ + p1.get(i)
}

Here is a list of the functions defined on struct values:



Data Structures

27

Table 6.1. Struct Value Functions

Functions Description

getStructName() Returns the name of the structure.

getNoOfFields() Returns the number of defined fields.

getFieldNames() Returns a list containing the field names.

get(index) Returns the field value of the field given by an integer
index (0 is the first defined filed).

get(name) Returns the value of the field given by a field name
string.

set(index,value) Sets the value of a field given by an integer index..

set(name,value) Sets the value of a field given by a name.

6.2. List Values
List values are used to hold a list of other values. To create a list you use the ‘List()’ function. It takes one

argument that tells how many elements it contains. If it is left out, the created list will be empty. Use the get and
set operations to retrieve and set elements.

        .var myList = List(2)
        .eval myList.set(0,25)
        .eval myList.set(1, "Hello world")
        .byte myList.get(0)    // Will give .byte 25
        .text myList.get(1)    // Will give .text "Hello world"

You can determine the number of elements in a list with the size-function and the add-function adds additional
elements.

        .var greetingsList = List()
        .eval greetingsList.add("Fairlight", "Booze Design", "etc." )
        .byte listSize = greetingsList.size()    // gives .byte 3

A compact way to fill a list with elements is:

        .var greetingsList = List().add("Fairlight", "Booze Design", "etc.")

Here is a list of functions defined on list values:

Table 6.2. List Values

Functions Description

get(n) Gets the n’th element (first element starts at zero).

set(n,value) Sets the n’th element (first element starts at zero).

add(value1, value2, …) Add elements to the end of the list.

addAll(list) Add all elements from another list.

size() Returns the size of the list.

remove(n) Removes the n’th element.

shuffle() Puts the elements of the list in random order.

reverse() Puts the elements of the list in reverse order.

sort() Sorts the elements of the list (only numeric values are
supported).



Data Structures

28

6.3. Working with Mutable Values
The list value described in the previous chapter is special since it is mutable, which means it can change its

contents. At one point in time a list can contain the values [1,6,7] and at another time [1,4,8,9]. The values previ-
ously described in the manual (Numbers, Strings, Booleans) are immutable since instances like 1, false, or “Hello
World” can’t change. In Kick Assembler 3 and later, you will have to lock mutable values if you want to use them
in a pass different from the one in which they were defined. When a value is locked, it becomes immutable and
calling a function that modifies its content will cause an error. There are two ways to lock a mutable value. You
can call its lock function:

// Locking a list with the lock function
.var list1 = List().add(1,3,5).lock()

Or you can define it inside a .define directive:

// The define directive locks the defined variables outside its scope 
.define list2, list3 {
    .var list2 = List().add(1,2)

    .var list3= List()
    .eval list3.add("a")
    .eval list3.add("b")
}
//.eval list3.add("c") // This will give an error

The .define directive defines the symbols that are listed after the .define keyword (list2 and list3). The directives
inside {…} are executed in a new scope so any local defined variables can't be seen from the outside. After
executing the inner directives, the defined values are locked and inserted as constants in the outside scope.

The inner directives are executed in 'function mode', which is a bit faster and requires less memory than ordinary
execution. So if you are using for loops to do some heavy calculations, you can optimize performance by placing
your loop inside a define directive. As the name 'function mode' suggests, directives placed inside functions are also
executed in ‘function mode’. In ‘function mode’ you can only use script directives (like .var, .const, .eval, .enum,
etc) while byte output generating directives (like lda #10, byte $22, .word $33, .fill 10, 0) are not allowed.

6.4. Hashtable Values
Hashtables are tables that map keys to values. You can define a hashtable with the Hashtable() function. To

enter and retrieve values you use the put and get functions, and with the keys function you can retrieve a list of
all keys in the table:

.define ht {
    // Define the table
    .var ht = Hashtable()

    // Enter some values (put(key,value))
    .eval ht.put("ram", 64)
    .eval ht.put("bits", 8)
    .eval ht.put(1, "Hello")
    .eval ht.put(2, "World")
    .eval ht.put("directions", List().add("Up","Down","Left","Right"))

    // Brief ways of initialising tables
    .var ht2 = Hashtable().put(1, "Yes").put(2, "No")
    .var ht4 = Hashtable().put(1,"a", 2,"b", 3,"c")
}

// Retrieve the values
.print ht.get(1)    // Prints Hello
.print ht.get(2)    // Prints World
.print "ram = " + ht.get("ram") + "kb"    // Prints ram=64kb



Data Structures

29

// Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
    .print keys.get(i)    // Prints "ram", "bits", 1, 2, directions
}

When a value is used as a key then it is the values string representation that is used. This means that ht.get(“1.0”)
and ht.get(1) returns the same element. If you try to get an element that isn't present in the table, null is returned.

Table 6.3. Hashtable Values

Function Description

put(key,value) Maps 'key' to 'value'. If the key is previously mapped to
a value, the previous mapping is lost. The table itself is
returned.

put(key,value,key,value,key,value....) Maps several keys to several values. The table itself is
returned.

get(key) Returns the value mapped to 'key'. A null value is re-
turned if no value has been mapped to the key.

keys() Returns a list value of all the keys in the table.

containsKey(key) Returns true if the key is defined in the table, otherwise
false.

remove(key) Removes the key and its value from the table.



30

Chapter 7
Functions and Macros

This chapter shows how to group directives together in units for later execution. In other words, how to define
and use functions, macros and finally pseudo commands which are a special kind of macros.

7.1. Functions
You can define you own functions which you can use like any of the build in library functions. Here is an

example of a function:

.function area(width,height) {
    .return width*height
}
.var x = area(3,2)
lda #10+area(4,8)

Functions consist of non-byte generating directives like .eval, .for, .var, and .if. When the assembler evaluates
the .return directive it returns the value given by the proceeding expression. If no expression is given, or if no .return
directive is reached, a null value is returned. Here are some more examples of functions:

// Returns a string telling if a number is odd or even
.function oddEven(number) {
    .if ([number&1] == 0 ) .return “even”
    else .return “odd”
}

// Inserts null in all elements of a list
.function clearList(list) {
    // Return if the list is null
    .if (list==null) .return

    .for(var i=0; i<list.size(); i++) {
        list.set(i,null)
    }
}

// Empty function – always returns null
.function emptyFunction() {
}

You can have several functions of the same name, as long as they have different number of arguments. So
this is valid code:

.function polyFunction() { .return 0 }

.function polyFunction(a) { .return 1 }

.function polyFunction(a,b) { .return 2 }

7.2. Macros
Macros are collections of assembler directives. When called, they generate code as if the directives where

placed at the macro call. The following code defines and executes the macro ‘SetColor’:

// Define macro
.macro SetColor(color) {
    lda #color   
    sta $d020
}



Functions and Macros

31

// Execute macro
:SetColor(1)
SetColor(2)   // The colon in front of macro calls is optional from version 4.0  

A macro can have any number of arguments. Macro calls are encapsulated in a scope, hence any variable
defined inside a macro can't be seen from the outside. This means that a series of macro calls to the same macro
doesn't interfere:

// Execute macro
ClearScreen($0400,$20)   // Since they are encapsulated in a scope 
ClearScreen($4400,$20)   // the two resulting loop labels don’t
                          // interfere

// Define macro
.macro ClearScreen(screen,clearByte) {
    lda #clearByte
    ldx #0
Loop:         // The loop label can’t be seen from the outside
    sta screen,x
    sta screen+$100,x
    sta screen+$200,x
    sta screen+$300,x
    inx
    bne Loop
}

Notice that it is ok to use the macro before it is declared.

Macros in Kick Assembler are a little more flexible than ordinary macros. They can call other macros or even
call themselves - Just make sure there is a condition to stop the recursion so you won't get an endless loop.

7.3. Pseudo Commands
Pseudo commands are a special kind of macros that take command arguments, like #20, table,y or ($30),y as

arguments just like mnemonics do. With these you can make your own extended commands. Here is an example
of a mov command that moves a byte from one place to another:

.pseudocommand mov src:tar {
    lda src
    sta tar
}

You use the mov command like this:

mov #10 : $1000          // Sets $1000 to 10  (lda #10, sta $1000)
mov source : target      // target = source   (lda source, sta target)
mov source,x : target,y  // (lda source,x , sta target,y)
mov #20 : ($30),y        // (lda #20, sta ($30),y )

The arguments to a pseudo command are separated by colon and you can use any argument you would give
to a mnemonic.

Note: In version 3.x, arguments where separated by semicolon. To make old code compile use the -pseudoc3x
commandline option or convert the code with the 3.x to 4.x converter.

You can add an optional colon in front of the pseudocommand calls. This enables you to call a command with
the same name as a mnemonic.

.pseudocommand adc arg1 : arg2 : tar {
    lda arg1
    adc arg2



Functions and Macros

32

    sta tar
}

adc #$10                 // This calls the standard mnemonic       
:adc #$20 : $10 : $20    // This calls the pseudocommand

The command arguments are passed to the pseudo command as CmdValues. These are values that contain an
argument type and a number value. You access these by their getter functions. Here is a table of the functions:

Table 7.1. CmdValue Functions

Function Description Example

getType() Returns a type constant (See the table
below for possibilities).

#20 will return AT_IMMEDIATE.

getValue() Returns the value. #20 will return 20.

The argument type constants are the following:

Table 7.2. Argument Type Constants

Constant Example

AT_ABSOLUTE $1000

AT_ABSOLUTEX $1000,x

AT_ABSOLUTEY $1000,y

AT_IMMEDIATE #10

AT_INDIRECT ($1000)

AT_IZEROPAGEX ($10,x)

AT_IZEROPAGEY ($10),y

AT_NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above table. This is because
the assembler automatically detect when these should be used from the corresponding absolute mode.

You can construct new command arguments with the CmdArgument function. If you want to construct a new
immediate argument with the value 100, you do it like this:

.var myArgument = CmdArgument(AT_IMMEDIATE, 100)
lda myArgument   // Gives lda #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a function that
given the first argument will return the next in a 16 bit instruction.

.function _16bitnextArgument(arg) {
    .if (arg.getType()==AT_IMMEDIATE) 
        .return CmdArgument(arg.getType(),>arg.getValue())
    .return CmdArgument(arg.getType(),arg.getValue()+1)
}

We always return an argument of the same type as the original. If it's an immediate argument we set the value to
be the high byte of the original value, otherwise we just increment it by 1. This will supply the correct argument for
the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and IMMEDIATE addressing modes. With this we can easily
define some 16 bits commands:



Functions and Macros

33

.pseudocommand inc16 arg {
    inc arg
    bne over
    inc _16bitnextArgument(arg)
over:
}

.pseudocommand mov16 src:tar {
    lda src
    sta tar
    lda _16bitnextArgument(src)
    sta _16bitnextArgument(tar)
}

.pseudocommand add16 arg1 : arg2 : tar {
    .if (tar.getType()==AT_NONE) .eval tar=arg1
    clc
    lda arg1
    adc arg2
    sta tar
    lda _16bitnextArgument(arg1)
    adc _16bitnextArgument(arg2)
    sta _16bitnextArgument(tar)
}

You can use these like this:

inc16 counter
mov16 #irq1 : $0314 
mov16 #startAddress : $30
add16 $30 : #128 
add16 $30 : #$1000: $32

Note how the target argument of the add16 command can be left out. When this is the case an argument with
type AT_NONE is passed to the pseudo command and the first argument is then used as target.

With the pseudo command directive you can define your own extended instruction libraries, which can speed
up some of the more trivial tasks of programming.



34

Chapter 8
Preprocessor

Before the contents of the source file is handed to the main parser, it goes through the preprocessor. The pre-
processor knows nothing of mnemonics or the script language. It's a simple mechanism that enables you to select
pieces of the source to be discarded or included in what the main parser sees. This chapter explains how. (NOTE:
The preprocessor is made like the one used in C# with the addition of #import, #importif and #importonce so you
might find this familiar)

8.1. Defining preprocessor symbols
The preprocessor uses symbols do determine if it should discard or include portions of the source file. There

are two methods to define a symbol. The first is from the command line. This defines a symbol called 'TEST':

java -jar KickAss.jar -define TEST

A symbol is either defined or not defined. It has no assigned value.

The other way is using the #define directive:

#define TEST

You can recognize a preprocessor directive on the '#'. If the first non-whitespace character on a line is a '#' then
the line is a call to the preprocessor. If you want to remove the definition of a symbol you use the #undef directive.

#undef TEST

8.2. Deciding what gets included
Including or discarding parts of the a source file is done by using #if directives, just like in the script language.

// Simple if block 
#if TEST
    inc $d020
#endif       // <- Use an endif to close this if block 

// You can also use else
#if A
    .print "A is defined"
#else
    .print "A is not defined"
#endif

Since the source isn't passed on to the main parser, you can write anything inside an untaken if, and it will
still compile.

#undef UNDEFINED_SYMBOL
#if UNDEFINED_SYMBOL
    Here we can write anything since it will never be seen by the main parser... 
#endif 

#elif is the combination of an #else and an #if. It can be used like this:

#if X
    .print "X"
#elif Y
    .print "Y"



Preprocessor

35

#elif Z
    .print "Z"
#else
    .print "Not X, Y and Z"
#endif

The #if blocks can be nested:

#if A
    #if B
        .print "A and B"   
    #endif 
#else
    #if X
        .print "not A and X"
    #elif Y
        .print "not A and Y" 
    #endif
#endif

The indentations doesn't change anything, its just to make the code easier to read.

8.3. Importing files
To include another sourcefile in your code, use the #import directive. You can also make a conditional import

with the #importif directive.

#import "MyLibrary.asm"  

#importif STAND_ALONE "UpstartCode.asm" //<- Only imported if STAND_ALONE is
 defined

To ensure that a file (e.g. a library) is only imported once, place an #importonce inside the imported file

File1.asm:
#importonce
.print "This will only be printed once!"

File2.asm:
#import "File1.asm" // This will import File1
#import "File1.asm" // This will not import anything

8.4. List of preprocessor directives
All the preprocessor directives are seen here:

Table 8.1. Preprocessor directives

Directive Description

#define NAME Defines a preprocessor symbol by the given name

#undef NAME Removes the symbol definition of the given name, if
any.

#import "filename" Imports a file at the given place in the source.

#importif EXPR "filename" Imports a file if a given expression evaluates to true.

#importonce Makes sure the current file is only imported once

#if EXPR Discards the following source if the given expression
evaluates to false.



Preprocessor

36

Directive Description

#endif Ends an #if or #else block.

#else Creates an else block.

#elif EXPR The combination of an #else and an #if directiveB

8.5. Boolean operators
A symbol works like a boolean. Either its defined or its not. The #if, #elif and #importif directives takes an

expression that contains symbols and operators and returns either true of false. Here are some examples:

#if !DEBUG && !COMPLICATED
   // some stuff 
#endif

#if DEBUG || (X && Y && Z) || X==DEBUG
   // Note that you can also use parenthesis#

#importif DEBUG&&STANDALONE "UpstartWithDebug.asm"

Here is a list of operators:

Table 8.2. Preprocessor operators

Operator Description

! Negates the expression

&& Logical and.

|| Logical or.

== Returns true if the operands are equal.

!= Returns true if the operands are not equal.

() Parenthesis can be used to controll order of evalua-
tion



37

Chapter 9
Scopes and Namespaces

Scopes and namespaces are use to avoid entities like symbols and functions in different parts of the program
to collide with each other. This section will cover how they works.

9.1. Scopes
Scopes are containers of symbols (variables, constants and labels). There can only be one symbol of each name

in a scope. Scopes are automatically in many situations. For example, a scope is set up when you execute a macro.
This prevent the internal labels to collide if you execute the macro twice.

The easiest way to define a scope yourself is using brackets.

.var x = 1
{
   .var x = 2  // <- this x won't collide with the previous
} 

9.2. Namespaces
Namespaces are containers of functions, macros and pseudocommands. There can only be one of each of these

entities in namespace. Every namespace also have an its own associated scope so each time you define a namespace
a scopes is automatically defined.

A simple way to declare a namespace is shown in the following example. The namespace directives is covered
in more detail later (and often the .filenamespace directive is more handy):

.function myFunction() { .return 1 }
label1:
.namespace mySpace {
   .function myFunction() { .return 1 } // <- This won't collide
   label1:  <- This won't collide
}

Namespace can be declared more than once. The second time you declare it, it will simply continue with the
already existing namespace.

.namespace repeatedSpace {
   endless: jmp *
   .function myFunc() { return 1}
}

.namespace repeatedSpace { // <- Don't give an error, we reuse the namespace
   jmp endless
   .function myFunc() { return 2} // <-- This gives an error, myFunc is already
 defined
}

If you are in doubt of which namespace you are in, you can get its name by the 'getNamespace()' function.

.print "Namespace = "+getNamespace()

.namespace MySpace {
   .print "Namespace = "+getNamespace()
   .namespace MySubSpace {
      .print "Namespace = "+getNamespace()
   }
}

The above will output:



Scopes and Namespaces

38

  Namespace = <RootNS>
  Namespace = MySpace
  Namespace = MySpace.MySubSpace

9.3. Scoping hierarchy
Namespaces and scopes are organized in an hierarchy. Every namespace have a parent, except for the system

namespace which is the namespace that contains all the build in functionality of Kick Assembler. Below this is
the root namespace. As the name implies its the root namespace of the source code.

So the hierarchy is like this:

1. System namespace & scope - Contains system mnemonics, constants, functions, macros and pseudocom-
mands.

2. Root namespace & scope - The root of the source code.

3. User defined namespace & scopes - Created by namespace directives.

4. User defined scopes - Created by macros, functions, for-loops, brackets {}, etc.

5. More user defined scopes...

Lets look at an simple example. It contains some scopes and some nonsense code :

*=$1000

start:
loop: //<-- 'loop' defined in the root scope

{     //<-- bracket scope 1 
loop: 
   {  // <-- bracket scope 2
         ldx #0
   loop: stx $d020
         inx
         bne loop
         jmp start
   }
}

The above code will form the scope hierarchy: System scope <- Root Scope <- BracketScope1 <- BracketS-
cope2.

When Kick Assembler resolves a symbol, it checks if it is present in the the current scope. If it can't be found it
looks in the parent scope. If it still can't be found it looks in the parent scope of the parent and so forth. In the above
example, the 'jmp loop' is placed in BracketScope2, so 'loop' is resolved to the loop symbol in BracketScope2. But
'start' is not defined in BracketScope2 or BracketScope1 so it will be resolved to the label in the root scope.

Since no namespaces are defined in the above, the namespace hierarchy is: System namespace <- Root Name-
space. The entities of namespaces is resolved similar to the scope resolving mechanism explained above.

9.4. The Namespace Directives
As already seen you can declare namespaces with the namespace directive. When declared it places a symbol

inside the scope the parent namespace so the labels inside can be accessed as local fields of the namespace symbol:

.namespace vic {
    .label borderColor = $d020
    .label backgroundColor0 = $d021
    .label backgroundColor1 = $d022



Scopes and Namespaces

39

    .label backgroundColor2 = $d023
}

        lda #0
        sta vic.backgroundColor0
        sta vic.borderColor

Namespaces are normally used to make sure that code in a source file (Like a library) is not colliding with
other parts of the code. For this, Place the filenamespace directive at the top of the file and everything after that
is placed in the desired namespace:

/* FILE 0 */

        jsr part1.init
        jsr part1.exec
        jsr part2.init 
        jsr part2.exec
        rts

/* FILE 1 */
.filenamespace part1
init:
        ...
        rts

exec:
        ...
        rts

/* FILE 2 */
.filenamespace part2
init:
        ...
        rts

exec:
        ...
        rts

9.5. Escaping the current scope or namespace
To escape the current scope, use @ to reference the root scope. In the following code '@myLabel' access the

myLabel label in the root scope:

.label myLabel = 1
{
   .label myLabel = 2

   .print "scoped myLabel="+ myLabel //<-- Returns 2 
   .print "root myLabel="+ @myLabel  //<-- Returns 1
}

The same can be done for functions, macros and pseudo commands. So the following example will print 'root'
not 'mySpace':

.function myFunction() { .return "root"}

.namespace mySpace {
   .function myFunction() { .return "mySpace" }
   .print @myFunction()
}



Scopes and Namespaces

40

You can also put new entities in the root scope when defining them from within another scope:

   jsr outside_label 
   rts
{
@outside_label:
    
   lda #0
   sta $d020
   sta $d020
   rts
}

or:

{
   .label @x = 1234
   .var @y= "Hello world"
   .const @z= true
}

.print "x="+x

.print "y="+y

.print "z="+z

Or for functions, macros or pseudo commands, here shown in a library file:

#import "mylib.lib"

.print myFunction()
MyMacro()
MyPseudoCommand

/* File mylib.lib */
#importonce
.filenamespace MyLibrary

.function @myFunction() { 
   .return 1
}

.macro @MyMacro() { 
   .print "Macro Called"
}

.macro @MyPseudoCommand { 
   .print "PseudoCommand Called"
}

9.6. Label Scopes
If you declare a scope after a label you can access the labels inside the scope as fields on the declared label.

This is handy if you use scoping to make the labels of your functions local:

        lda #’ ‘
        sta clearScreen.fillbyte+1
        jsr clearScreen
        rts

clearScreen: {
fillbyte: lda #0



Scopes and Namespaces

41

        ldx #0
loop:
        sta $0400,x
        sta $0500,x
        sta $0600,x
        sta $0700,x
        inx
        bne loop
        rts
}

The above code fills the screen with black spaces. The code that calls the clearScreen subroutine use
clearScreen.fillbyte to access the fillbyte label. If you use the label directive to define the fillbyte label, the code
can be done a little nicer:

        lda #’a’
        sta clearScreen2.fillbyte
        jsr clearScreen2
        rts

ClearScreen2: {
        .label fillbyte = *+1
        lda #0
        ldx #0
loop:
        sta $0400,x
        sta $0500,x
        sta $0600,x
        sta $0700,x
        inx
        bne loop
        rts
}

Now you don't have to remember to add one to the address before storing the fill byte.

Label scopes also works with the label directive, so its also possible to write programs like this:

.label mylabel1= $1000 {
    .label mylabel2 = $1234
}
.print “mylable2=”+mylabel1.mylabel2

9.7. Accessing Local Labels of Macros and Pseudocommands
Label scopes are also created when placing a label before a macro or pseudocommand execution as demon-

strated in the following program:

        *=$1000
start:  inc c1.color
        dec c2.color
c1:     :setColor()
c2:     :setColor()
        jmp start

.macro setColor() {
        .label color = *+1
        lda #0
        sta $d020
}

In this way, you can access the labels of an executed macro.



Scopes and Namespaces

42

9.8. Accessing Local Labels of For / While loops
By placing a label in front of a for or a while loop, a label scope array is created. This way you can access the

inner labels of a loop from the outside or the labels of one loop from another loop:

        .for (var i=0; i<20; i++) { 
            lda #i 
            sta loop2[i].color+1 
        }

loop2:  .for (var i=0; i<20; i++) { 
color:      lda #0
            sta $d020 
        }

9.9. Accessing Local Labels of if's
By placing a label in front of an .if directive you can access the labels of the taken branch (true or false) of the

directive. The symbol need only to be defined in the taken branch. If the condition is evaluated to false and no
false branch exists, all references to symbols give an 'symbol undefined' error . Here is an example:

       jmp myIf.label

myIf: .if (true) {
         ...
label:   lda #0  // <-- Jumps here
         ...
      } else {
         ...
label:   nop
         ...
}



43

Chapter 10
Segments

10.1. Introduction
Segments are lists of memory blocks which are used to organize your code. You can use them to define the

order which things are placed in memory (data after code etc). Your can combine segments to form new segments
and you can use modifiers to process the output of a segment. Finally, you can direct the output of a segment to
a files or disks or simply throw it away.

This is implemented in Kick Assembler in a backward compatible way, so if you don't use segments, everything
is placed on a default segment and directed to the standard output file as you are used to.

10.2. Some quick examples
Before we go into detail with how segments work, let us take a look at some examples of use. You might not

understand everything in the following examples, but it helps to know where we are heading before going into
the details.

If you want to have one section of you code output to another file you can assemble it into a segment and write
that segment to a file like this:

.segment File1 [outPrg="MyFile.prg"]
    *=$1000
    lda #00
    ... more code ...
.segment Default

If you want to patch a file you can load the file into a Base segment, put a Patch segment on top of it with the
modifications and write the result to a file. Since the Patch is on top it will overwrite the base:

.file [name="Out.prg", segments="Base,Patch", allowOverlap]

.segment Base [prgFiles="basefile.prg"]

.segment Patch [] 

    *=$8021 "Insert jump"
    jmp $8044

Segments can also be used for outputting code in alternative formats. Here is an example writing code for a
cartridge with 4 banks:

.segment CARTRIDGE_FILE [outBin="myfile.bin"]
    .segmentout [segments ="BANK1"]
    .segmentout [segments ="BANK2"]
    .segmentout [segments ="BANK3"]
    .segmentout [segments ="BANK4"]

.segmentdef BANK1 [min=$1000, max=$1fff, fill]

.segmentdef BANK2 [min=$1000, max=$1fff, fill]

.segmentdef BANK3 [min=$1000, max=$1fff, fill]

.segmentdef BANK4 [min=$1000, max=$1fff, fill]

.segment BANK1

..code for segment 1 goes here...

.segment BANK2

..code for segment 2 goes here...

.segment BANK3

..code for segment 3 goes here...



Segments

44

.segment BANK4

..code for segment 4 goes here...

A segment is set up for each bank and they are output in the right order to a binary file. The code in the 4
segments is restricted to the address space $1000-$1fff. Notice how the same address space can be used multiple
times, since the code resides in different segments.

10.3. Segments
In Kick Assembler, a segment is a list of memory blocks, so let's look at these first.

A memory block is generated each time you use the *= directive. It has a start, an optional name and might
be marked as virtual. If you add code without defining a memory block first, a default block is created for you.
Here are examples of memory blocks.

        inc $d020         // This create a default memory block 
        jmp *-3           

        *=$1000           // Start of memoryblock 2 (unnamed)
        lda #1
        sta $d020
        rts
     
        *=$4000 "block3"  // Start of memoryblock 3     
        lda #2
        sta $d021
        rts
     

A segment is a list of memory blocks. Since you haven't selected any segment in the above code, they are all
placed on the 'Default' segment.

A segment is defined by the .segmentdef directive and you use the .segment directive to decide which segment
to add code to:

        // Define two segments
        .segmentdef MySegment1
        .segmentdef MySegment2 [start=$1000]

        // Add code to segment1 
        .segment MySegment1
        *=$4000
        ldx #30
 l1:    inc $d021 
        dex
        bne l1

        // Add code to segment2 (Using default block starting in $1000)
        .segment MySegment2
        inc $d021
        jmp *-3

        // Switch back to segment1 and add more code.
        .segment MySegment1
        inc $d020
        jmp *-3

In the above code MySegment1 is defined used the default parameters for a segment. While MySegment2 is
defined setting the start address for the default memory block to $1000. A complete list of parameters is given
in the end of this chapter.

Notice that you can switch back to a segment at any time and continue adding code to its current memory block.



Segments

45

Sometimes, it's convenient to define a memory block and switch to it with the same command. This is done by
adding a parameters block ([...]) to the segment directive.

        // This:
        .segment MySegment [start=$1000]        

        // Is a shorthand notations for this:
        .segmentdef MySegment [start=$1000]
        .segment MySegment

A segment can only by be defined once so the above will give produce an error saying that 'MySegment' is
double defined.

10.4. Where did the output go?
If you compile the previous segment examples you will find that it produces no output. So where did the code

go? The answer is nowhere - we defined segments but didn't direct their content anywhere. However we can still see
their content using the -bytedump option on the command line when running KickAsssembler. That will generate
the file 'ByteDump.txt' with the bytes of the segments. The example from the previous section looks like this:

******************************* Segment: Default *******************************
***************************** Segment: MySegment1 ******************************
[Unnamed]
4000: a2 1e     - ldx #30
4002: ee 21 d0  - inc $d021 
4005: ca        - dex
4006: d0 fa     - bne l1
4008: ee 20 d0  - inc $d020
400b: 4c 08 40  - jmp *-3
***************************** Segment: MySegment2 ******************************
[MySegment2]
1000: ee 21 d0  - inc $d021
1003: 4c 00 10  - jmp *-3

The simplest way of getting the code to a program file is to specify a 'outPrg' parameter:

        .segment Code [outPrg="colors.prg"]

        *=$1000
        inc $d020
        jmp *-3

If you use the 'outBin' parameter instead a binary file will be output. In the output chapter you can see more
options for outputting segments to files or disks images.

10.5. The Default segment
If you don't want to use segments you don't have to. If you don't switch segment using the .segment directive

the code is placed on the 'Default' segment which is connected to the the standard output file. In the byte dump in
the previous sections you can see the 'Default' segment is empty.

If you want to return the default segment after adding code to another segment simply write:

        .segment Default

10.6. Naming memory blocks while switching segment
One use of segments is to place code/data that is tied together but should be located different places in memory,

close together in the source code. This leads to a coding style where you may want to name a new block of code
every time you switch segment. You could do this by adding a memblock directive right after the segment directive.
But as a convenient shorthand you can just place a text string after the segment switch:



Segments

46

        // This
        .segment Code "My Code"

        // Is the same as this
        .segment Code
        .memblock "My Code"
 

To demonstrate this style is here given a larger example. Some of the features are first covered later. :

.segmentdef Code [start=$0900]

.segmentdef Data [start=$8000]

.file [name="segments.prg", segments="Code,Data", modify="BasicUpstart", marg1=
$0900]

//--------------------------------------------------------
// Main
//--------------------------------------------------------
        .segment Code "Main"
        jsr colorSetup
        jsr textSetup 
        rts 

//--------------------------------------------------------
// Color
//--------------------------------------------------------
        .segment Code "Color Setup"
colorSetup:
        lda colors
        sta $d020
        lda colors+1
        sta $d021
        rts
        
        .segment Data "Colors"
colors: .byte LIGHT_GRAY, DARK_GRAY
              

//--------------------------------------------------------
// Text
//--------------------------------------------------------
        .segment Code "Text Setup"
textSetup: {
        ldx #0
loop:   lda text,x
        cmp #$ff
        beq out
        sta $0400,x
        inx
        jmp loop
out:
        rts
        
        .segment Data "Static Text"
text:   .text "hello world!"
        .byte $ff
}

You will now get a memory map like this, when you use the -showmem’ option:

Code-segment:
  $0900-$0906 Main
  $0907-$0913 Color Setup



Segments

47

  $0914-$0924 Text Setup

Data-segment:
  $8000-$8001 Colors
  $8002-$800e Static Text

The code and data are now separated in memory, but close together in the source code.

Note that scoping and segments don't affect each other so you can switch segments within a scope. In the above
its used so the 'text' label is local. It can be seen from textSetup code but not from other routines. If you want to
have a scroll text routine it could have its own 'text' label and they wouldn't collide.

10.7. The default memory block
Code placed inside a segment is added to the default memory block until a block is explicitly defined (Not to

be confused with the 'Default' segment):

        .segment Code [start=$1000]
        inc $d020         // Places code in the default memoryblock 
        jmp *-3           

        *=$2000           // Start a new memoryblock 
        inc $d021          
        jmp *-3           

The default memory block is special since it can be controlled by parameters given when the segment is defined.
Notice the 'start=$1000' parameter that sets the start of the default memory block.

In some cases you want one segment to start after each other. This is done with the 'startAfter' parameter.

        .segmentdef Code [start=$1000]
        .segmentdef Data [startAfter="Code"]

The ability to control code in this way can be useful, for instance when you want to save memory. If you have
some initialization code, that is only used once in the upstart phase, then you could place it after the rest of the
code, and use the same memory for a buffer that is used after the init phase:

        .file [name="program.prg", segments="Code, InitCode"]         

        .segmentdef Code      [start=$1000]
        .segmentdef InitCode  [startAfter="Code"]
        .segmentdef Buffer    [startAfter="Code"]

        .segment Buffer
table1: .fill $100, 0
table2: .fill $100, 0

Notice that overlapping code only gives an error if it's inside the same segment. So you can place code in both
'InitCode' and 'Buffer' without getting errors. The Code and InitCode segments are saved in the file while the
Buffer is thrown away.

By using the 'align' parameter together with 'startAfter' you align the default memory block.

        .segmentdef Code       [start=$8000]
        .segmentdef Virtual100 [startAfter= "Code", align=$100, virtual]
        
        .segment Code "Some code"
        ldx #$ff
        lda table,x
        
        .segment Virtual100 "Table"
 table: .fill $100,0



Segments

48

By the memory map printed while assembling, you see the start of the Virtual100 segment is aligned to a $100
boundary to avoid spending an extra cycle when accessing the table:

Code-segment:
  $8000-$8004 Some code

Virtual100-segment:
  *$8100-$81ff Table

In the above example was also used 'virtual' (When no '=' is present its shorthand for 'virtual=true') to declare
all the memory blocks in the virtual100 segment virtual. In most cases this won't be necessary since you just don't
direct the segment anywhere so the generated bytes are thrown away, but in some cases it can come in handy.

'segmentAfter' works by taking the last defined memory block (Either the default or user defined by *=) and
starts where this ends. Block included in other ways (imported from other segments, included from files etc.) are
not considered.

10.8. Including other segments
You can include the memory blocks from other segments into the a segment by using the 'segments' parameter

when defining the segment:

        .segmentdef Upstart [start=$0801]
        .segmentdef Code    [start=$1000]
        .segmentdef Data    [start=$3000]  
        .segmentdef Combi1  [segments="Code, Data"]
        .segmentdef Combi2  [segments="Code, Data, Upstart"]

A segment can be included in multiple other segment as seen by the 'Code' and 'Data' segment in the above
example.

This can be combined freely with adding code from other sources or directly using commands (lda, sta) inside
the segment.

10.9. Including .prg files
A prg-file contains a start address (the two first bytes) and some data. Prg files can be imported as memory

blocks using the prgFiles parameter when defining the segment:

        // Importing prg files when defining segment       
        .segmentdef Misc1 [prgFiles="data/Music.prg, data/Charset2x2.prg"]

        // Another way of producing the same result
        .segment Misc2 []
        *=$1000 // Here we have to place the block manually
        .import c64 "data/Music.prg"
        *=$2000 // Here we have to place the block manually
        .import c64 "data/Charset2x2.prg"
 

Again, this can freely be combined with other ways of adding blocks to the segment.

10.10. Including sid files
Sid music files are imported as memory blocks using the 'sidFiles' parameter. Here is an example that plays

a sid tune:

        .segment Main [sidFiles="data/music.sid", outPrg="out.prg"]



Segments

49

        
        BasicUpstart2(start)
        
start:  sei
        lda #00
        tax
        tay
        jsr $1000

loop:   lda #$f0
        cmp $d012
        bne loop
        inc $d020 
        jsr $1003
        dec $d020
        jmp loop

10.11. Boundaries
It is possible to set a minimum and maximum address of the segment using the 'min' and 'max' parameters. If

a block gets outside the given boundaries, it will give an error:

        .segment Data [start=$c000, min=$c000, max=$cfff]

        .fill $1800, 0  // Error since range is $c000-$d7ff

In some cases it is useful to ensure a segment have a specific site. By setting the 'fill' parameter to true all non
used values in the min-max range is set to the fill byte:

        // This will generate $1000: 0,0,1,2,3,0,0,0
        .segment Data [min=$1000, max=$1008, fill]
        *=$1002
        .byte 1,2,3    

In the above example the fill byte is zero, but it can be specified with the 'fillByte' parameter.

Restricting size can be used to avoid using the ROM area or simply enforcing the rules of a maximum size
of 256 or 128 bytes.

The following entry was submitted to the 128 byte font competition on CSDb by Jesper Balman Gravgaard
(Rex). It rotates the ROM font 90 degrees. The max size of 128 bytes includes the two address bytes of the prg file.

// 90 degree rotated ROM font in 69 bytes of code
.segment Main [min=$0801, max=$0880-2, outPrg="out.prg"]

.label SCREEN = $400

.label CHARGEN = $d000

.label CHARSET = $3000

        *=$0801 "Basic"
        BasicUpstart(ch2)

        *=$080d "Program"
ch4:    dey         // Wait for 8 char lines 
        bne ch 
        lda pix+1   // Next char
        clc
        adc #8
        sta pix+1
ch2:    sei         // Start char
        lda #$32
        sta $1
        ldy #8



Segments

50

ch:     lda CHARGEN // Start char line
        ldx #7
npi:    asl         // Start pixel
pix:    rol CHARSET,x
        dex
        bpl npi
        inc ch+1    // Next char line
        bne ch4
        inc pix+2   // Inc both high bytes
        inc ch+2    
        bne ch4     // Run until CHARGEN is $0000
ee:
        lda #$37
        sta $1
        cli
        lda #SCREEN/$40|CHARSET/$400
        sta $d018
        rts

10.12. Overlapping memory block
When all blocks of a segment are assembled, any overlaps are detected. Normally overlaps will give an error

but you can allow overlap with the 'allowOverlap' parameter. This is useful if you want to patch files. Here is an
example where the file "base.prg" is applied two changes and saved to the file "patched.prg":

        // Setup
        .file [name="patched.prg", segments="Base,Patch", allowOverlap]
        .segmentdef Base [prgFiles="data/base.prg"]
        .segmentdef Patch []

        // Patch Code 
        .segment Patch
        *=$3802 "Insert jmp"
        jmp $3fe0
        
        *=$38c2 "Insert lda #$ff"
        lda #$ff

The memory map looks like this:

Base-segment:
  $3800-$39ff base.prg

Patch-segment:
  $3802-$3804 Insert jmp
  $38c2-$38c3 Insert lda #$ff

In the above example we have a base segment with the original file and a patch segment with the modifica-
tions. They are combined in the intermediate segment generated by the file directive which has the allowOverlap
parameter set.

Overlapping blocks are cut so the byte from the block with the highest priority are returned. The latest added
blocks wins so since the 'Patch' segment lies after 'Base' in the segments list the patch code is chosen.

10.13. Segment Modifiers
The memory block of a segment can be modified before it is passed on to its consumers. A segment-modifier

takes a list of memory blocks as input and outputs a modified list of memory blocks.

The build in 'BasicUpstart' modifier adds a memory block in $0801 with a basic upstart program that jumps
to a given address:



Segments

51

        .file [name="test.prg", segments="Code"]
        .segment Code [start=$8000, modify="BasicUpstart", _start=$8000]
        inc $d020
        jmp *-3

The 'modify' parameter assigns the 'BasicUpstart' modifier. As a convention, arguments to the modifier has a
_ appended in front, so '_start' is an argument for the BasicUpstart modifier.

Users can write their own modifiers as plug-ins (Crunchers etc.) as shown in the plug-in chapter.

Here is a list of build in segment modifiers:

Table 10.1. Build in modifiers

Name Parameters Description

BasicUpstart _start Adds a memory block with a ba-
sic upstart program that points to the
given start address.

10.14. Intermediate segments
When segments are used in other directives than the .segment and .segmentdef directive its often done using

an intermediate segment. Memory blocks are passed on through an implicit created segment which gives you a lot
of the functionality explained in this chapter simply by using the same parameters.

E.g. This means that you can use the file directive like this:

.file [name="myfile.prg", segments="Code,Data", sidFiles="music.sid"]

The only parameter that is special for the file directive is 'name'. The rest is standard parameters for directives
using intermediate segments. For a complete list of intermediate parameters see the 'List of segment parameters'
section placed last in this chapter.

10.15. The .segmentout directive
The .segmentout directive places the bytes of an intermediate segment in the current memory block. This can be

used for reallocating code or data like with the .pseudopc directive. It is also good for outputting data in alternative
formats as shown in the 'quick examples' section.

Here is an example that execute some code in the zeropage:

        // Main code
        BasicUpstart2(start)
start:  sei
        ldx #0
loop:   lda zpCode,x
        sta zpStart,x
        inx
        cpx #zpCodeSize
        bne loop
        jmp zpStart

zpCode: .segmentout [segments="ZeroPage_Code"] 
        .label zpCodeSize = *-zpCode 

        // Zeropage code
        .segment ZeroPage_Code [start=$10]
zpStart:
        inc $d020
        jmp *-3

In the memory map, you can now see the zeropage code:



Segments

52

Memory Map
----------
Default-segment:
  $0801-$080c Basic
  $080e-$0824 Basic End

ZeroPage_Code-segment:
  $0010-$0015 ZeroPage_Code

Since the bytes are supplied through an intermediate segment all intermediate parameters can be used. In the
following example, a sid file is placed at an alternative address:

        *=$8000 "Music Data"
        .segmentout [sidFiles="data/music.sid"]

10.16. Debugger data
You can mark segments with a destination using the 'dest' parameter. A destination could be 'DISKDRIVE',

'BANK1', 'BANK2' etc. The parameter doesn't change anything, but is passed on to debuggers that can use the
value to organize debug data. For example labels defined in a segment which destination is the disk-drive, should
not be mixed with the code which is in the computer. The parameter is used like this:

.segmentdef [dest="DISKDRIVE"]

The meaning of each destination name is defined by the debugger.

10.17. List of segment parameters

Table 10.2. Segment parameters

Intermediate Parameter Example Description

align align=$100 Aligns the default mem-
ory block to a given page
size. Used together with
'startAfter'

X allowOverlap allowOverlap Allows overlapping
memory blocks

dest dest="1541" Set the destination of
the segment. (This is info
for external programs like
C64debugger)

X fill fill Fills unused bytes be-
tween min and max with
the fill byte

X fillByte fillByte=$88 Set the value of the fill
byte. If not specified, it will
be zero.

X hide hide Hides the segments in
memory dumps.

X marg1, marg2,.., marg5 marg1=$1000,
marg2="hello"

Arguments for a modifi-
er.

X max max=$cfff Sets the maximum ad-
dress of the segment.

X min min=$c000 Sets the minimum ad-
dress of the segment.



Segments

53

Intermediate Parameter Example Description

X modify modify="BasicUpstart" Assigns a modifier to
the segment.

outBin outBin="myfile.bin" Outputs a bin-file with
the content of the segment.

outPrg outPrg="myfile.prg" Outputs a prg-file with
the content of the segment.

X prgFiles prgFiles="data/
music.prg, da-
ta/charset2x2.prg"

Includes program files
as memory blocks.

X segments segments="Code, Data" Includes memory
blocks from other seg-
ments.

X sidFiles sidFiles="music.sid" Include the data of a sid
file as a memory block.

start start=$1000 Set the start of the de-
fault memory block to the
given expression

startAfter startAfter="Code" Makes the default mem-
ory block start after the giv-
en segment.

virtual virtual Makes all the memory
blocks in the segment vir-
tual.



54

Chapter 11
PRG files and D64 Disks

11.1. Introduction
This chapter explains how to create prg-files and d64 disk images using the .file and .disk directive.

The .file directive is quite straight forward, but adds a few extra options over the outPrg parameter for segments.

With the .disk directive you can use Kick Assembler as a standalone disk creation tool, by selecting files from
the hard disk to add to a disk image, or you can assemble directly to the disk using segments, or you can mix the
two methods.The directive collects parameters and sends them to a disk writer which can either be the build in
disk writer or one given by a plug in. The build in default writer is based on the 'CC1541' disk tool by Andreas
Larsson, and should cover all needs when creating standard disks. With specialized writers from plugins you can
write disks for specific loaders etc.

A big thanks to Andreas for rewriting CC1541 to Java for use in Kick Assembler!

11.2. Parameter Maps
The .file and .disk directives use parameter maps to describe their parameters. These are square brackets with

comma separated parameters:

[name="Bob", age=27, useGlasses=false, wearsTshirt]

You can assign any type of value (strings, numbers, booleans, etc) to a parameter. Notice the last parameter has
no assignment. This is a short notation for assigning the boolean value 'true' to the parameter ('wearsTshirt=true').

11.3. The File Directive
The file directive is used like this:

        // Save a prg file containing the code segment
        .file [name="MyFile.prg", segments="Code"]
        
        // Save a bin file containing the code and data segment
        .file [name="MyFile.bin", type="bin", segments="Code,Data"]
        
        // Save one file for each memoryblock in the DATA segment
        // ('Data_Sinus.prg' and 'Data_Mul3.prg' are created)
        .file [name="Data.prg", mbfiles, segments="Data"]

        // Define some segments 
        .segment Code []
        BasicUpstart2(start)
start:  inc $d020
        jmp *-3

        .segment Data []
        *=$0f00 "Mul3"
        .fill $40, i*3        

        *=$2000 "Sinus"
        .fill $100, 127.5 + 127.5*sin(toRadians(i*360/256))

The content of the file is given using an intermediate segment which makes it quite flexible. See the segment
chapter for all options or the disk directive sections for more examples.

The name parameter is mandatory, the rest is optional. Here are the list of specific .file directive parameters:



PRG files and D64 Disks

55

Table 11.1. File Directive Parameters

Parameter Default Example Description

mbfiles false mbfiles If set to true, a file is creat-
ed for each memory block.

name name="MyFile.prg" The name of the file.

type "prg" type="bin" Sets the file type. Valid
types are "prg" and "bin"

11.4. The Disk Directive
The disk directives has the following format:

.disk OPT_WRITERNAME [...DISK PARAMETERS..] {
    [..FILE1 PARAMETERS..],
    [..FILE2 PARAMETERS..],
    [..FILE3 PARAMETERS..],
    ....
}

The writer name is optional, if left empty the default disk writer is called. Otherwise the writer name is used
to look up a 3rd party disk writer imported from a plug in. In the following sections described how the default
writer works.

11.5. Disk Parameters
The simplest disk you can create is by only giving the filename of the disk image. The rest of the parameters

is then filled out by default values:

.disk [filename="MyDisk.d64"]
{
}

You fill in extra parameters as a comma separated list. Here we add a disk name and an id, which is displayed
in the top of the directory:

.disk [filename="MyDisk.d64", name="THE DISK", id="2021!" ] 
{
}

The complete of possible parameters for the disk is:

Table 11.2. Disk parameters

Parameter Default Example Description

dontSplitFilesOverDir false dontSplitFilesOverDir If set to true, the file that
would otherwise have sec-
tors on both sides of the di-
rectory track will be moved
to after the directory track.

filename filename="MyDisk.d64" The name of the disk image

format "commodore" format="commodore" Sets the format of the disk.
The options are: "com-
modore", "speeddos", "dol-
phindos"

id " 2A" id="2021!" The disk id



PRG files and D64 Disks

56

Parameter Default Example Description

interleave 10 interleave=10 Sets the default interleave
value for the disk

name "UNNAMED" name="THE DISK!" The disk name

showInfo false showInfo Print info about the gen-
erated disk after creation.
(Start track, sector etc.)

storeFilesInDir false storeFilesInDir If set to true, files can be
stored in the sectors of the
directory track not used by
the directory itself.

11.6. File Parameters
Now let's get some files from different sources on the disk:

.disk [filename="MyDisk.d64", name="THE DISK", id="2021!" ] 
{
        [name="----------------", type="rel"                            ],
        [name="BORDER COLORS   ", type="prg",  segments="BORDER_COLORS" ],
        [name="BACK COLORS     ", type="prg<", segments="BACK_COLORS"   ],
        [name="HIDDEN          ", type="prg",  hide, segments="HIDDEN"  ],
        [name="----------------", type="rel"                            ],
        [name="MUSIC FROM PRG  ", type="prg", prgFiles="data/music.prg" ],
        [name="MUSIC FROM SID  ", type="prg", sidFiles="data/music.sid" ],
        [name="----------------", type="rel"                            ],
}

        .segment BORDER_COLORS []
        BasicUpstart2(start1) 
start1: inc $d020
        jmp *-3

        .segment BACK_COLORS []
        BasicUpstart2(start2) 
start2: dec $d021
        jmp *-3

        .segment HIDDEN []
        .text "THIS IS THE HIDDEN MESSAGE!"

The content of a file is done using an intermediate segment, which gives a wide range possibilities of specifying
input. In the example, the content of the first three prg files comes from the segments specified below. The third
uses a prg file from the hard drive and the fourth the content of a sid file. For all the possibilities of working with
intermediate segments, see the segments chapter.

The 'name' and 'type' parameters specifies the name and type of the file. Notice the '<' at the end of the second
prg type which means the file is locked.

The third prg file is not shown in the directory due to the 'hide' option. You can get its start track and sector
by using the 'showInfo' disk parameter.

A complete list of parameters is given here.

Table 11.3. General File parameters

Parameters Default Example Description

hide false hide If set to true, the file will
not be shown in the direc-
tory.



PRG files and D64 Disks

57

Parameters Default Example Description

interleave The disks default interleave = 10 Sets the interleave of the
file.

name "" name="NOTE" The filename

type "prg" type="prg<" The type of the file. Avail-
able types are: "del", "seq",
"prg", "usr", "rel". You can
append a "<" to the end
of the type to mark it as
locked

11.7. Custom Disk Writers
A custom disk writer is written in a plug in. Refer to the "3rd Party Java plugins" if you want to implement

one yourself.

It is called like this:

.plugin "myplugins.Mydiskwriter"

.disk MyDiskWriter [.. disk params...] 
{
        [ ..file params.., segments="Code,Data"],
        [ ..file params.., prgFiles="data/music.prg"],
}



58

Chapter 12
Import and Export

In this chapter we will look at other ways to get data in and out of Kick Assembler.

12.1. Passing Command Line Arguments to the Script
From the command line you can assign string values to variables, which can be read from the script. This is

done with the ‘:’ notation like this:

java –jar KickAss.jar mySource.asm :x=27 :sound=true :title=”Beta 2” 

The three variables x, sound and beta2 and their string values will now be placed in a hashtable that can be
accessed by the global variable cmdLineVars:

.print “version =” + cmdLineVars.get(“version”)

.var x= cmdLineVars.get(“x”).asNumber()

.var y= 2*x

.var sound = cmdLineVars.get(”sound”).asBoolean()

.if (sound) jsr $1000

12.2. Import of Binary Files
It's possible to load any file into a variable. This is done with the LoadBinary function. To extract bytes of

the file from the variable you use the get function. You can also get the size of the file with the getSize function.
Here is an example:

// Load the file into the variable ’data’
.var data = LoadBinary("myDataFile")

// Dump the data to the memory
myData: .fill data.getSize(), data.get(i)

The get function extracts signed bytes as defined by java, which means the byte value $ff gives the number -1.
This is not a problem when dumping bytes to memory, however if you want to process the data you might want
an unsigned byte. To get an unsigned byte use the uget function instead. The byte value $ff will then return 255.

When you know the format of the file, you can supply a template string that describes the memory blocks.
Each block is given a name and a start address relative to the start of the file. When you supply a template to the
LoadBinary function, the returned value will contain a get and a size function for each memory block:

.var dataTemplate = "Xcoord=0,Ycoord=$100, BounceData=$200"

.var file = LoadBinary(“moveData”, dataTemplate)
Xcoord:     .fill file.getXCoordSize(), file.getXCoord(i) 
Ycoord:     .fill file.getYCoordSize(), file.getYCoord(i) 
BounceData: .fill file.getBounceDataSize(), file.getBounceData(i)

Again, file.ugetXCoord(i) will return an unsigned byte.

There is a special template tag named ‘C64FILE’ that is used to load native c64 files. When this is in the
template string, the LoadBinary function will ignore the two first byte of the file, since the first two bytes of a
C64 file are used to tell the loader the start address of the file. Here is an example of how to load and display a
Koala Paint picture file:

.const KOALA_TEMPLATE = "C64FILE, Bitmap=$0000, ScreenRam=$1f40, ColorRam=$2328,
 BackgroundColor = $2710"
.var picture = LoadBinary("picture.prg", KOALA_TEMPLATE)



Import and Export

59

        *=$0801 "Basic Program"
        BasicUpstart($0810)

        *=$0810 "Program"
        lda #$38
        sta $d018
        lda #$d8
        sta $d016
        lda #$3b
        sta $d011
        lda #0
        sta $d020
        lda #picture.getBackgroundColor()
        sta $d021
        ldx #0
!loop:
        .for (var i=0; i<4; i++) {
           lda colorRam+i*$100,x
           sta $d800+i*$100,x
        }
        inx
        bne !loop-
        jmp *

*=$0c00;            .fill picture.getScreenRamSize(), picture.getScreenRam(i)
*=$1c00; colorRam:  .fill picture.getColorRamSize(), picture.getColorRam(i)
*=$2000;            .fill picture.getBitmapSize(), picture.getBitmap(i)

Notice how easy it is to reallocate the screen and color ram by combining the *= and .fill directives. To avoid
typing in format types too often, Kick Assembler has some build in constants you can use:

Table 12.1. BinaryFile Constants

Binary format constant Blocks Description

BF_C64FILE A C64 file (The two first bytes are
skipped)

BF_BITMAP_SINGLECOLOR ScreenRam,Bitmap The Bitmap single color format out-
putted from Timanthes.

BF_KOALA Bitmap,ScreenRam,ColorRam,BackgroundColorFiles from Koala Paint

BF_FLI ColorRam,ScreenRam,Bitmap Files from Blackmails FLI editor.

BF_DOODLE ColorRam,Bitmap Files from Doodle

So if you want to load a FLI picture, just write

.var fliPicture = LoadBinary("GreatPicture", BF_FLI)

The formats were chosen so they cover the outputs of Timanthes (NB. Timanthes doesn’t save the background
color in koala format, so if you use that you will get an overflow error).

TIP: If you want to know how data is placed in the above formats, just print the constant to the console while
assembling. Example:

.print "Koala format="+BF_KOALA

12.3. Import of SID Files
The script language knows the format of SID files. This means that you can import files directly from the HVSC

(High Voltage Sid Collection) which uses this format. To do this you use the LoadSid function which returns a
value that represents the sidfile.



Import and Export

60

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/
Closing_In.sid")

From this you can extract data such as the init address, the play address, info about the music and the song data.

Table 12.2. SIDFileValue Properties

Attribute/Function Description

header The sid file type (PSID or RSID)

version The header version

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

speed The speed flags (Consult the Sid format for details)

flags flags (Consult the Sid format for details)

startpage Startpage (Consult the Sid format for details)

pagelength Pagelength (Consult the Sid format for details)

size The data size in bytes

getData(n) Returns the n'th byte of the module. Use this function
together with the size variable to store the modules bi-
nary data into the memory.

Here is an example of use:

//---------------------------------------------------------
//---------------------------------------------------------
//                     SID Player
//---------------------------------------------------------
//---------------------------------------------------------
        .var music = LoadSid("Nightshift.sid")
        BasicUpstart2(start)
start:
        lda #$00
        sta $d020
        sta $d021
        ldx #0
        ldy #0
        lda #music.startSong-1
        jsr music.init
        sei
        lda #<irq1
        sta $0314
        lda #>irq1
        sta $0315
        asl $d019
        lda #$7b
        sta $dc0d
        lda #$81
        sta $d01a
        lda #$1b



Import and Export

61

        sta $d011
        lda #$80
        sta $d012
        cli
        jmp *
//---------------------------------------------------------
irq1:
        asl $d019
        inc $d020
        jsr music.play 
        dec $d020
        pla
        tay
        pla
        tax
        pla
        rti
//---------------------------------------------------------
        *=music.location "Music"
        .fill music.size, music.getData(i)

//----------------------------------------------------------
// Print the music info while assembling
.print ""
.print "SID Data"
.print "--------"
.print "location=$"+toHexString(music.location)
.print "init=$"+toHexString(music.init)
.print "play=$"+toHexString(music.play)
.print "songs="+music.songs
.print "startSong="+music.startSong
.print "size=$"+toHexString(music.size)
.print "name="+music.name
.print "author="+music.author
.print "copyright="+music.copyright

.print ""

.print "Additional tech data"

.print "--------------------"

.print "header="+music.header

.print "header version="+music.version

.print "flags="+toBinaryString(music.flags)

.print "speed="+toBinaryString(music.speed)

.print "startpage="+music.startpage

.print "pagelength="+music.pagelength

Assembling the above code will create a musicplayer for the given sidfile and print the information in the music
file while assembling:

  SID Data
  --------
  location=$1000
  init=$1d70
  play=$1003
  songs=1.0
  startSong=1.0
  size=$d78
  name=Nightshift
  author=Ari Yliaho (Agemixer)
  copyright=2001 Scallop

  Additional tech data
  --------------------
  header=PSID



Import and Export

62

  header version=2.0
  flags=100100
  speed=0
  startpage=0.0

TIP: If you use the –libdir option to point to your HVSC main directory, you don’t have to write long filenames.
For example:

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/
Closing_In.sid")

will be

.var music = LoadSid("Tel_Jeroen/Closing_In.sid")

12.4. Converting Graphics
Kick Assembler makes it easy to convert graphics from gif and jpg files to the basic C64 formats. A picture

can be loaded into a picture value by the LoadPicture function. The picture value can then be accessed by various
functions depending on which format you want. The following will place a single color logo in a standard 32x8
char matrix charset placed at $2000.

*=$2000
.var logo = LoadPicture("CML_32x8.gif")
.fill $800, logo.getSinglecolorByte((i>>3)&$1f, (i&7) | (i>>8)<<3)

If you don't like the compact form of the .fill command you can use a for loop instead. The following will
produce the same data:

*=$2000
.var logo = LoadPicture("CML_32x8.gif")
.for (var y=0; y<8; y++)
    .for (var x=0;x<32; x++)
        .for(var charPosY=0; charPosY<8; charPosY++)
            .byte logo.getSinglecolorByte(x,charPosY+y*8)

The LoadPicture can take a color table as the second argument. This is used to decide which bit pattern is
produced by a pixel. In single color mode there are two bit patters (%0 and %1) and multi color mode has four
(%00, %01, %10 and %11). If you don’t specify a color table, a default table is created based on the colors in the
picture. However, normally you wish to control which color is mapped to a bit pattern. The following shows how
to convert a picture to a 16x16 multi color char matrix charset:

*=$2800 “Logo”
.var picture = LoadPicture("Picture_16x16.gif", 
                            List().add($444444, $6c6c6c,$959595,$000000))
.fill $800, picture.getMulticolorByte(i>>7,i&$7f)

The four colors added to the list are the RGB values for the colors that are mapped to each bit pattern.

Finally the picture value contains a getPixel function from which you can get the RGB color of a pixel. This
comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Table 12.3. PictureValue Functions

Attribute/Function Description

width Returns the width of the picture in pixels.

height Returns the height of the picture in pixels.



Import and Export

63

Attribute/Function Description

getPixel(x,y) Returns the RGB value of the pixel at position x,y. Both
x and y are given in pixels.

getSinglecolorByte(x,y) Converts 8 pixels to a single color byte using the color
table. X is given as a byte number (= pixel position/8)
and y is given in pixels.

getMulticolorByte(x,y) Converts 4 pixels to a multi color byte using the color ta-
ble. X is given as a byte number (= pixel position/8) and
y is given in pixels. (NB. This function ignores every
second pixel since the C64 multi color format is half the
resolution of the single color.)

12.5. Writing to User Defined Files
With the createFile function you can create/overwrite a file on the disk. You call it with a file name and it

returns a value that can be used to write data to the file:

.var myFile = createFile("breakpoints.txt") 

.eval myFile.writeln("Hello World")

IMPORTANT! For security reasons, you will have to use the –afo switch on the command line otherwise file
generation will be blocked. Eg “java –jar KickAss.jar source.asm -afo” will do the trick.

File creation is useful for generating extra data for emulators. The following example shows how to generate
a file with breakpoint for VICE:

.var brkFile = createFile("breakpoints.txt") 

.macro break() {
    .eval brkFile.writeln(“break “ + toHexString(*))
}

*=$0801 “Basic”
BasicUpstart(start)

*=$1000 "Code"
start:
    inc $d020
    break()
    jmp start

When running VICE with the breakpoint file (use the –moncommands switch), VICE will run until the break
and then exit to the monitor.

Here is a list of the functions on a file value:

Table 12.4. FileValue Functions

Attribute/Function Description

Attribute/Function Description.

writeln(text) Writes the ‘text’ to the file and insert a line shift.

writeln() Insert a line shift.

12.6. Exporting Labels to other Sourcefiles
By using the –symbolfile option at the commandline it’s possible export all the assembled symbols. The line

java –jar KickAss.jar source1.asm –symbolfile 



Import and Export

64

will generate the file source1.sym while assembling. Lets say the content of source1 is:

.filenamespace source1
        *=$2000
clearColor:
        lda #0
        sta $d020
        sta $d021
        rts

The content of source1.sym will be:

.namespace source1 {
        .label clearColor = $2000
}

It's now possible to refer to the labels of source1.asm from another file just by importing the .sym file:

.import source “source1.sym”
jsr source1.clearColor

12.7. Exporting Labels to VICE
By using the –vicesymbols option you can export the labels to a .vs file that can be read by the VICE emulator.

For example:

java –jar KickAss.jar source1.asm –vicesymbols 



65

Chapter 13
Modifiers

With modifiers, you can modify assembled bytes before they are stored to the target file. It could be you want
to encrypt, pack or crunch the bytes. Currently, the only way to create a modifier is to implement a java plugin
(See the plugin chapter).

13.1. Modify Directives
You can modify the assembled bytes of a limited block or of the whole source file. To modify the whole source

file use the .filemodify directive at the top of the file. The following modifies the whole file with the modifier
‘MyModifier’ called with the parameter 25.

.filemodify MyModifier(25)

To modify a limited block you use the .modify directive:

.modify MyModifier() {
    *=$8080
main:
    inc $d020
    dec $d021
    jmp main

    *=$1000
    .fill $100, i
}



66

Chapter 14
Special Features

Misc features

14.1. Name and path of the sourcefile
You can get the filename and the path of the current sourcefile with the getPath() and getFilename() functions:

.print "Path : " + getPath()

.print "Filename : " + getFilename()

14.2. Basic Upstart Program
To make the assembled machine code run on a C64 or in an emulator, it's useful to include a little basic program

that starts your code (for example: 10 sys 4096). The BasicUpstart macro is standard macro that helps you to create
programs like that. The following program shows how it’s used:

        *= $0801 "Basic Upstart"
        BasicUpstart(start)    // 10 sys$0810

        *= $0810 "Program"
start:  inc $d020
        inc $d021
        jmp start

TIP: Insert at basic upstart program in the start of your programs and use the –execute option to start Vice. This
will automatically load and execute your program in Vice after successful assembling.

There is a second variation of the basic upstart macro that also takes care of setting up memory blocks:

BasicUpstart2(start)    // 10 sys$0810
start:  inc $d020
        inc $d021
        jmp start

If you want to see the script code for the macros, you can look in the autoinclude.asm file in the KickAss.jar file.

14.3. Opcode Constants
When making self modifying code or code that unrolls speed code, you have to know the value of the opcodes

involved. To make this easier, all the opcodes have been given their own constant. The constant is found by writing
the mnemonic in uppercase and appending the addressing mode. For example, the constant for a rts command is
RTS and ‘lda #0’ is LDA_IMM. So, to place an rts command at target you write:

        lda #RTS
        sta target

You get the size of a mnemonic by using the asmCommandSize command

.var rtsSize = asmCommandSize(RTS)      //rtsSize=1 

.var ldaSize1 = asmCommandSize(LDA_IMM) //ldaSize1=2 

.var ldaSize2 = asmCommandSize(LDA_ABS) //ldaSize2=3

Here are a list of the addressing modes and constant examples:



Special Features

67

Table 14.1. Addressing Modes

Argument Description Example constant Example command

None RTS rts

IMM Immediate LDA_IMM lda #$30

ZP Zeropage LDA_ZP lda $30

ZPX Zeropage,x LDA_ZPX lda $30,x

ZPY Zeropage,y LDX_ZPY ldx $30,y

IZPX Indirect zeropage,x LDA_IZPX lda ($30,x)

IZPY Indirect zeropage,y LDA_IZPY lda ($30),y

ABS Absolute LDA_ABS lda $1000

ABSX Absolute,x LDA_ABSX lda $1000,x

ABSY Absolute,y LDA_ABSY lda $1000,y

IND Indirect JMP_IND jmp ($1000)

REL Relative BNE_REL bne loop

14.4. Colour Constants
Kick Assembler has build in the C64 colour constants:

Table 14.2. Colour Constants

Constant Value

BLACK 0

WHITE 1

RED 2

CYAN 3

PURPLE 4

GREEN 5

BLUE 6

YELLOW 7

ORANGE 8

BROWN 9

LIGHT_RED 10

DARK_GRAY/DARK_GREY 11

GRAY/GREY 12

LIGHT_GREEN 13

LIGHT_BLUE 14

LIGHT_GRAY/LIGHT_GREY 15

Example of use:

        lda #BLACK
        sta $d020
        lda #WHITE 
        sta $d021



Special Features

68

14.5. Making 3D Calculations
To make it easy to to make 3D Calculations, Kick Assembler supports vector and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y and z as
argument:

.var v1 = Vector(1,2,3)

.var v2 = Vector(0,0,2)

You can access the coordinates of the vector by its get functions and do the most common vector operations
by the assigned functions. Here are some examples:

.var v1PlusV2 = v1+v2

.print "V1 scaled by 10 is " +  (v1*10)

.var dotProduct = v1*v2

Here is a list of vector functions and operators:

Table 14.3. Vector Value Functions

Function/Operator Example Description

get(n) Returns the n'th coordinate (x=0,
y=1, z=2).

getX() Returns the x coordinate.

getY() Returns the y coordinate.

getZ() Returns the z coordinate.

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors.

- Vector(1,2,3)-Vector(2,3,4) Returns the result of a subtraction be-
tween the two vectors.

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a num-
ber.

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product.

/ Vector(1,2,3)/2 Divides each coordinate by a factor
and returns the result.

X(v) Vector(0,1,0).X(Vector(1,0,0)) Returns the cross product between
two vectors.

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the other
constructor functions described later. You access the entries of the matrix by using its get and set functions:

.var matrix = Matrix()    // Creates an identity matrix

.eval matrix.set(2,3,100)

.print "Matrix.get(2,3)=" + matrix.get(2,3)

.print "The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be to move
the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity matrix, which is one
that leaves the coordinates unchanged. By using the set function you can construct any matrix you like. However,
Kick Assembler has constructor functions that create the most common transformation matrixes:

Table 14.4. Matrix Value Constructors

Function Description

Matrix() Creates an identity matrix.



Special Features

69

Function Description

RotationMatrix(aX,aY,aZ) Creates a rotation matrix where aX, aY and aZ are the
angles rotated around the x, y and z axis. The angles are
given in radians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled
by sX, the y-coordinate by sY and the z-coordinate by
sZ.

MoveMatrix(mX,mY,mZ) Creates a move matrix that moves mX along the x-axis,
mY along the y-axis and mZ along the z-axis.

PerspectiveMatrix(zProj) Creates a perspective projection where the eye-point is
placed in (0,0,0) and coordinates are projected on the
XY-plane where z=zProj.

You can multiply the matrixes and thereby combine their transformations. The transformation is read from
right to left, so if you want to move the space 10 along the x axis and then rotate it 45 degrees around the z-
axis, you write:

.var m = RotationMatrix(0,0,toRadians(45))*MoveMatrix(10,0,0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = m*Vector(10,0,0)

.print "Transformed v=" + v

The functions defined on matrixes are the following:

Table 14.5. Matrix Value Functions

Function/Operator Example Description

get(n,m) Gets the value at n,m.

set(n,m,value) Sets the value at n,m.

*Vector Matrix()*Vector(1,2,3) Return the product of the matrix and
a vector.

*Matrix Matrix()*Matrix() Returns the product of two matrixes.

Here is a little program to illustrate how matrixes can be used. It pre calculates an animation of a cube that rotates
around the x, y and z-axis and is projected on the plane where z=2.5. The data is placed at the label ‘cubeCoords’:

//--------------------------------------------------------------------------------
// Objects 
//--------------------------------------------------------------------------------
.var Cube = List().add( 
          Vector(1,1,1),  Vector(1,1,-1),  Vector(1,-1,1),  Vector(1,-1,-1),
          Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

//--------------------------------------------------------------------------------
// Macro for doing the precalculation
//--------------------------------------------------------------------------------
.macro PrecalcObject(object, animLength, nrOfXrot, nrOfYrot, nrOfZrot) {

    // Rotate the coordinate and place the coordinates of each frams in a list
    .var frames = List()
    .for(var frameNr=0; frameNr<animLength;frameNr++) {
        // Set up the transform matrix
        .var aX = toRadians(frameNr*360*nrOfXrot/animLength)
        .var aY = toRadians(frameNr*360*nrOfYrot/animLength)



Special Features

70

        .var aZ = toRadians(frameNr*360*nrOfZrot/animLength)
        .var zp = 2.5 // z-coordinate for the projection plane
        .var m = ScaleMatrix(120,120,0)*
                    PerspectiveMatrix(zp)*
                    MoveMatrix(0,0,zp+5)*
                    RotationMatrix(aX,aY,aZ)

        // Transform the coordinates
        .var coords = List()
        .for (var i=0; i<object.size(); i++) {
            .eval coords.add(m*object.get(i))
        }
        .eval frames.add(coords)
    }

    // Dump the list to the memory
    .for (var coordNr=0; coordNr<object.size(); coordNr++) {
        .for (var xy=0;xy<2; xy++) {
            .fill animLength, $80+round(frames.get(i).get(coordNr).get(xy))
        }
    }
}
//--------------------------------------------------------------------------------
// The vector data
//--------------------------------------------------------------------------------
.align $100
cubeCoords: PrecalcObject(Cube,256,2,-1,1)
//--------------------------------------------------------------------------------



71

Chapter 15
Assemble Information

Kick Assembler 4, and later versions, exposes information of build in features and of the assembled source
files. This is intended for authors of editors who want to provide extra support for Kick Assembler such as realtime
error and syntax feedback and help text for build in directives and libraries. These features are under development
and the interface might change. If you plan to use this get in touch with the author so we can coordinate our efforts.

15.1. The AsmInfo option
To get assemble info back from Kick Assembler, use the -asminfo option:

java -jar KickAss.jar mysource.asm -asminfo all

When executing the above statement, output is written to the file "asminfo.txt", but you can specify the file
by the -asminfofile option:

java -jar KickAss.jar mysource.asm -asminfo all -asminfofile myAsmInfo.txt

The content of the file will have different sections dependent on what info you have requested. The second
parameter describes which info is returned, so in the above example all possible info is returned. The output divided
into sections, with different types of information, here is an example:

[libraries]
Math;constant;PI
Math;constant;E
Math;function;abs;1
Math;function;acos;1
...
[directives]
.text;.text "hello";Dumps text bytes to memory.
.by;.by $01,$02,$03;An alias for '.byte'.
...
[files]
0;KickAss.jar:/include/autoinclude.asm
1;mySource.asm
[syntax]
symbolReference;38,8,38,17,0
symbolReference;41,20,41,26,0
functionCall;41,8,41,18,0
symbolReference;56,8,56,17,0
...
[errors]
...

The details of the sections will be explained later.

There are two categories of asmInfo: Predefined info, which contains information about the features that is
build into the assembler like directives and libraries. The other main category is source specific informations, like
the syntax of the source or errors in the source. You can turn on one or several categories or sections:

This will export all predefined assemble info sections:

java -jar KickAss.jar mysource.asm -asminfo allPredefined

And this will export all predefined assemble info sections and any errors:

java -jar KickAss.jar mysource.asm -asminfo allPredefined|errors

Notice the '|' is used to give several selections - you can add as many as you want. This is the available options:



Assemble Information

72

Table 15.1. AsmInfo

Name Category Description

all meta Exports all info, both predefined and
source specific

allPredefined meta All predefined infos

allSourceSpecific meta All source specific infos

libraries predefined The defined libraries (Functions and
constants)

directives predefined The defined directives

preprocessorDirectives predefined The defined preprocessor directives

files sourceSpecific The files involved in the assembling

syntax sourceSpecific Syntax info of the given files

errors sourceSpecific Errors of the assembling

When the category says 'meta' the option is used to select several of the sections. When the category is not
'meta' the option refers to a specific section. The details of the sections is given in later chapters.

15.2. Realtime feedback from the assembler
For writers of editors Kick Assembler has some special features which enables you to get info about the source

file while the user is editing it. This is done by calling Kick Assembler in strategic places like, when the user hasn't
typed anything for a given period of time.

First, the content of the one or several source files might not be saved. To get by this, save the content to a
temporary file and use the replaceFile option to substitute the content of the original file:

java -jar KickAss.jar mysource.asm -replacefile c:\ka\mysource.asm c:\tmp
\tmpSource.asm

This replaces the content of the first file with the second. It doesn't matter if the file is the main file or included
by another filer, and your can have as many replaceFile options as you want.

Secondly, you don't want Kick Assembler to do a complete assembling each time you call it. It might take
too much time to assemble and you don't want the assembler to overwrite output. To take care of this, use the -
noeval option.

java -jar KickAss.jar mysource.asm -noeval ...

This make Kick Assembler parse the source file and do an initial pass, no evaluation will be done. This will
detect syntax errors and return syntax information.

15.3. The AsmInfo file format
The assembly info files is divided into sections. If the first char of a line is '[' it marks a new section, and the

name of the section is written between square brackets. Each line consist of one or more semicolon separated
fields. Notice that in special cases, the last field might contain a semicolon itself (This will be noted in the involved
sections). So the basic file format looks like this:

[section1]
field1;field2;field3
field1;field2;field3
field1;field2;field3 
[section2]
field1;field2
field1;field2
field1;field2 



Assemble Information

73

As special type of field, which is used in several sections is a 'source range' which describes a range of chars
in a source file. It consist of 5 integers:

startline, startposition, endline, endposition, fileindex

The positions is the positions in a given line. The file index tell which file it is and is an index pointing to an
entry in the files section. An example of a source range is:

38,8,38,17,1

15.4. The sections
Here, the details of the different sections in the asminfo file is explained.

15.4.1. Libraries section
The format of the libraries section are:

libraryname;entrytype;typedata

There are two entry types: 'function' and 'constant'. The type data depends on the entry type, and is either:

libraryname;constant;constantname
libraryname;function;functionname;numberOfArguments

Examples:

[libraries]
Math;constant;PI
Math;constant;E
Math;function;abs;1
Math;function;acos;1

15.4.2. Directives section
The format of the directives section is:

directive;example;description

Example:

[directives]
.text;.text "hello";Dumps text bytes to memory.

15.4.3. Preprocessor directives section
The format of the preprocessor directives section is:

directive;example;description

Example:

[ppdirectives]
#define;#define DEBUG;Defines a preprocessor symbol.

15.4.4. Files section
The file list section is a list of the involved files. The fields are:



Assemble Information

74

index;filepath

Important: The file path might contain semicolons!

An example of a list is:

[files]
0;KickAss.jar:/include/autoinclude.asm
1;test1.asm

Notice the first entry starts with KickAss.jar. This means that its a file included from inside the KickAss.jar file.

15.4.5. Syntax section
The syntax section has the format:

type;sourcerange

Example:

[syntax]
operator;21,20,21,20,0

Note: Its the plan to add more fields here, like where a the label is defined if its a label reference, etc.

15.4.6. Errors section
The errors section has the format:

level;sourcerange;message 

Example:

[errors]
Error;41,2,41,7,1;Unknown preprocessor directive #defin



75

Chapter 16
Testing

Kick Assembler has .assert directives that are useful for testing. They were made to make it easy to test the
assembler itself, but you can use them for testing your own pseudo-commands, macros, functions. When assertions
are used, the assembler will automatically count the number of assertions and the number of failed assertions and
display these when the assembling has finished.

16.1. Asserting expressions
With the assert directive you can test the value of expressions. It takes three arguments: a description, an

expression, and an expected result.

.assert "2+5*10/2", 2+5*10/2, 27 

.assert "2+2", 2+2, 5 

.assert "Vector(1,2,3)+Vector(1,1,1)", Vector(1,2,3)+Vector(1,1,1), Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the expected
result. If these don’t match an error message is appended:

2+5*10/2=27.0 (27.0)
2+2=4.0 (5.0) – ERROR IN ASSERTION!!!
Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

16.2. Asserting errors in expressions
To make sure that an expression gives an error when the user gives the wrong parameters to a function, use

the .asserterror directive:

.asserterror "Test1" , 20/10

.asserterror "Test2" , 20/false

In the above example test1 will fail since its perfectly legal to divide 20 by 10. Test2 will produce the expected
error so this assertion is ok. The above will give the following output:

Test1 – ERROR IN ASSERTION!
  Test2 – OK. | Can’t get a numeric representation from a value of type boolean

16.3. Asserting code
The assert directive has a second form which makes it possible to compare pieces of assembled code:

.assert "Test2", { lda $1000 }, {ldx $1000}

.assert "Test", {
    .for (var i=0; i<4; i++)
        sta $0400+i
}, {
    sta $0400
    sta $0401
    sta $0402
    sta $0403
}

The assert directive will give an ok or failed message and the assembled result as output. The output of the
above example is as follows:



Testing

76

  Test1 – FAILED! | 2000:ad,00,10  -- 2000:ae,00,10
  Test2 – OK. | 2000:8d,00,04,8d,01,04,8d,02,04,8d,03,04

16.4. Asserting errors in code
Like the assert directive the asserterror directive also has a form that can assert code:

.asserterror “Test” , { lda #”This must fail”}

Output:

Test – OK. | The value of a Command Argument Value must be an integer. Can’t get an
 integer from a value of type ‘string’



77

Chapter 17
3rd Party Java plugins

It's possible to write you own plugins for Kick Assembler. Currently the following types of plugins are sup-
ported:

• Macro Plugins - Implements macros

• Modify Plugins – Implements modifiers

• SegmentModifier Plugins – Implements segment modifiers

• Archive Plugins – Used to group multiple plugins in one unit

• AutoIncludeFile Plugins – Used to include a source code file in an archive

• DiskWriter Plugins – Used to write d64 image disk writers.

17.1. The Test Project
Before going any further I suggest you download the plugin development test eclipse project from the Kick

Assembler website.

To use it do the following:

1. Create an Eclipse workspace.

2. ’Import->Existing Projects into workspace->Select archive file’ and select the downloaded project file.

3. Replace the KickAss.jar file in the jars folder with the newest version, if necessary.

You are now ready to start. In the src folder you can see examples of how the plugins are made. The files in
PluginTest shows how to use them and in the launch folder is launch files for running the examples (Rightclick-
>Run As).

17.2. Registering your Plugins
To work with plugins you should do two things. When assembling you should make your compiled java class

visible from the java classpath. If you are using eclipse to run your Kick Assembler, like in the example project,
you don’t have to worry about this. If you are using the command line you will have to set either the classpath
environment variable or use the classpath option of the java command.

Secondly you should tell Kick Assembler about your plugin. There are two ways to do this. If your plugin is
only used in one of your projects, you should use the .plugin directive. Eg:

.plugin "test.plugins.macros.MyMacro"

If the plugin should be available every time you use Kick Assembler, you place the class name in a line in the
file ‘KickAss.plugin’ which should be placed in the same locations as the KickAss.jar. Using // in the start of the
line makes it a comment. Example of a KickAss.plugin file:

// My macro plugins
test.plugins.macros.MyMacro1
test.plugins.macros.MyMacro2
test.plugins.macros.MyMacro3

17.3. A quick Example (Macros)
First, let's see a quick example of an implemented plugin. To implement a macro plugin you must create a java

class that implements the IMacro interface:



3rd Party Java plugins

78

public interface IMacro extends IPlugin {
   MacroDefinition getDefinition();
   byte[] execute(IValue[] parameters, IEngine engine);
}

The interface has two methods, one that gets parameters that defines the macro, and one executes it. This is
the basic structure of nearly all the plugins. The MacroDefinition class is really simple. It consist of a getter and
setters for the defining properties. Since the only defining property of a macro is its name, it looks like this:

public class MacroDefinition {
   // Properties
   private String name;

   // Getters/setters for properties, in this case getName() and setName(name)
   ....
}

A simple example of a macro implementation that prints ‘Hello World from MyMacro!’ and returns zero bytes
looks like this:

package test.plugins.macros;
import kickass.plugins.interf.general.IEngine;
import kickass.plugins.interf.general.IValue;
import kickass.plugins.interf.macro.IMacro;
import kickass.plugins.interf.macro.MacroDefinition;

public class MyMacro implements IMacro {
   MacroDefinition definition;
   
   public MyMacro() {
      definition = new MacroDefinition();
      definition.setName("MyMacro");
   }

   @Override
   public MacroDefinition getDefinition() {
      return definition;
   }

   @Override
   public byte[] execute(IValue[] parameters, IEngine engine) {
      engine.print("Hello world from mymacro!");
      return new byte[0];
   }
}

You execute it as a normal macro:

.plugin "test.plugins.macros.MyMacro"
MyMacro()

The ‘arguments’ parameter is the arguments parsed to the macro. You can read about these in the 'general
communication classes' section. The same goes for the ‘engine’ parameter which is used to do additional commu-
nication with the Kick Assembler engine.

17.4. General Communication interfaces
In this section the general interfaces that are used in several plugins are explained. They are all placed in

the package 'kickass.plugins.interf.general'. The most important ones are IEngine and IValue. Give them a quick
review and return to this chapter when you need info for implementing a particular plugin.



3rd Party Java plugins

79

17.4.1. The IEngine Interface

The IEngine interface is the central object when you want to communicate with Kick Assembler. With this you
can report errors, print text, create an output stream for outputting a file, etc.

Table 17.1. IEngine Interface

Method Description

void addError(String message, ISourceRange range); Adds an error to the engines error list, but continues
execution. With this method you can report several er-
rors from your plug in.

byte charToByte(char c); Converts a char to a petscii byte (upper case).

IMemoryBlock createMemoryBlock(String name,
int startAddr, byte[] bytes);

Creates a memory block. Used as result in some plug
ins.

void error(String message); Prints an error message and stops execution. Works
like the .error directive. Important! This method will
throw an AsmException which you have to pass through
any try-catch block used in your code.

void error(String message, ISourceRange); Like error(string message), buy with a specified po-
sition in the code (SourceRange)

File getCurrentDirectory(); Gets the current directory.

File getFile(String filename); Opens a file with the given filename. The assembler
will look for the file as it would look for a source code
file. If it isn't present in the current directory, it will look
in the library directories. It will return null if the file
can't be found.

OutputStream openOutputStream(String name)
throws Exception;

Use this to create output from the assembler (like a
disk file for a disk writer)

void print(String message); Prints a message to the screen. Works like the .print
directive.

void printNow(String message); Prints a message to the screen. Works like the .print-
now directive.

byte[] stringToBytes(String str); Converts a string to petscii bytes (Upper case)

17.4.2. The IValue Interface

Objects that implements the interface IValue represents values from Kick Assembler like numbers, strings and
booleans. For instance, the arguments given to a macro are given as IValue objects. The IValue interface contains
the following methods to extract information from the value:

Table 17.2. IValue Interface

Method Description

int getInt(); Gets an integer from the value if possible, otherwise
it will give an error message.

Double getDouble(); Gets a double from the value if possible, otherwise it
will give an error message.

String getString(); Gets a string from the value if possible, otherwise it
will give an error message.

Boolean getBoolean(); Gets a Boolean from the value if possible, otherwise
it will give an error message.



3rd Party Java plugins

80

Method Description

List<IValue> getList(); Gets at list of values if possible, otherwise it will
give an error message. The list implements size(), get(i),
isEmpty() and iterator().

Boolean hasIntRepresentation(); Tells if you can get an integer from the value. Every
number value can produce an integer. 3.2 will produce
3).

boolean hasDoubleRepresentation(); Tells if you can get a double from the value.

boolean hasStringRepresentation(); Tells if you can get a string from the value.

boolean hasBooleanRepresentation(); Tells if you can get a boolean from the value.

boolean hasListRepresentation(); Tells if you can get a list from the value.

17.4.3. The ISourceRange Interface
The ISourceRange interface represents a position in the source code. An example could be line 17 column 3 to

line 17 column 10. These are given to plugins to indicate where it is called from or where certain parameters are
defined. The plugin can give them back when reporting errors to indicate what code coursed the error.

Seen from the plugin, the interface is empty:

public interface ISourceRange {

}

17.4.4. The IMemoryBlock Interface
The IMemoryBlock interface represents a memory block. A block consist of a start address and some byte data.

Here are an example of two memory blocks generated by the assembler:

*=$1000 "Block 1"
.byte 1,2,3

*=$2000 "Block 2"
lda #1
sta $d020
rts

It can either be passed as argument to the plugin or created by the plugin and returned as a result. Use the
'createMemoryBlock' in the IEngine interface to create new memory blocks.

Table 17.3. IMemoryBlock Interface

Method Description

int getStartAddress() The start address of the memory block.

byte[] getBytes() The assembled bytes of the memory block.

String getName(); The name of the memory block.

17.4.5. The IParameterMap Interface
The IParametersMap interface represent a collection of name-value pairs. The name is a string and the value is

of type IValue. These source code parameters are usually defined in square brackets like this:

[name="Kevin", age=27, hacker=true]

The main methods defined on parameter maps are exists(), getValue(), getSourceRange() and getParameter-
Names(). In addition there are some convenience methods for easy retrieval of values of specific types:



3rd Party Java plugins

81

Table 17.4. IParameterMap Interface

Method Description

boolean exist(String paramName) Tells if a parameter of the given name exists.

boolean getBoolValue(String paramName, boolean de-
faultValue)

Returns the boolean parameter of the given name. The
default is returned in case of an undefined value.

<T extends Enum<?>> T getEnumValue(Class<T>
enumeration, String name, T defaultLitteral)

Returns the enum parameter of the given name. The de-
fault is returned in case of an undefined value.

int getIntValue(String paramName, int defaultValue) Returns the int parameter of the given name. The default
is returned in case of an undefined value.

Collection<String> getParameterNames() Returns the names of the defined parameters.

ISourceRange getSourceRange(String paramName) Returns the position at which this parameter is defined
in the source code.

String getStringValue(String paramName, String de-
faultValue)

Returns the string parameter of the given name. The de-
fault is returned in case of an undefined value.

IValue getValue(String paramName) Returns the value of the parameter with the given name.

17.5. The Plugins
In this section the different plugins are described. Most of them follow a simple pattern: They contain two

methods, one for returning a definition for the plugin (name, required parameters, etc. ) and one for executing it:

interface XYZPlugin extends IPlugin {
   XYZDefinition getDefinition();
   void execute(...); 
}

The XYZDefinition class simply contains getters and setters for the definition of the plugin, so your get-
Definition() method should simply return an XYZDefinition where you have set the fields using the setters
(setName("MyPlugin") etc). Many of the definitions only contains a name, but having a definition class makes it
easier to extend without breaking backwards compatibility.

You will find that all plugin interfaces extends IPlugin. IPlugin is empty and simply a way of ensuring type
safety if you want an object you are sure is a plugin.

17.5.1. Macro Plugins
The interface for a macro looks like this:

public interface IMacro extends IPlugin {
   MacroDefinition getDefinition();
   byte[] execute(IValue[] parameters, IEngine engine);
}

public class MacroDefinition {
   // Properties
   private String name;

   // Getters/setters for properties, in this case getName() and setName(name)
   ....
}

Macro plugins are described previously in the 'Quick Example' section, so look there for a complete example.



3rd Party Java plugins

82

17.5.2. Modifier Plugins
With modifiers you modify the outputted bytes from a section of the code. E.g the following will send the

memory block starting at $8080 the the modifier called 'MyModifier' and the returned bytes will be used instead:

.modify MyModifier(27) {
    *=$8080
main:
    inc $d020
    jmp main
}

You implement a modifier by implementing the following interface. The 'name' in the definition is the modifier
name ('MyModifier' in the above example.):

public interface IModifier extends IPlugin {
   ModifierDefinition getDefinition();
   byte[] execute(List<IMemoryBlock> memoryBlocks, IValue[] parameters, IEngine
 engine);
}

public class ModifierDefinition {
   private String name;

   // Getters and setters
}

Also see the chapter on modifiers.

17.5.3. SegmentModifier plugins
With segment modifiers you can modify the memory block of a segment before it is passed on to its destination.

For instance you could implement a packer plugin and have a file packed before it is saved with the command:

.file [name="PackedData.prg", segments="Data", modify="MyPacker", _start=$2000]

A segment modifier is created by implementing a class thats realises the ISegmentModifier plugin:

public interface ISegmentModifier extends IPlugin {
   SegmentModifierDefinition getDefinition();
   List<IMemoryBlock> execute(List<IMemoryBlock> memoryBlocks, IParameterMap
 parameters, IEngine engine);
}

public class SegmentModifierDefinition {
   private String name;
   private Set<String> allParameters;
   private Set<String> nonOptionalParameters;
   
   // getters and setters
}

The allParameters set defines the possible parameters for the modifier. As a convention you should prefix them
with _ like '_start' in the above example. This way the names won't collide with future segment parameter names
and you can easily tell which parameters belong to the modifier.

See the 'segments' chapter for more about Segment Modifiers and the example project of how to implement.

17.5.4. DiskWriter Plugins
With disk writers you can write disks in a format you decide. Before reading further, read about the the standard

disk writer to see what they are able to do. To create a writer you implement a class of the interface IDiskWriter:



3rd Party Java plugins

83

public interface IDiskWriter extends IPlugin {
   DiskWriterDefinition getDefinition();
   void execute(IDiskData disk, IEngine engine);
}

public class DiskWriterDefinition {
   private String name;
   private Set<String> allDiskParameters;
   private Set<String> nonOptionalDiskParameters;
   private Set<String> allFileParameters;
   private Set<String> nonOptionalFileParameters;
}

Recall the format of the .disk directive to understand the definition properties:

.disk WRITERNAME [...DISK PARAMETERS..] {
    [..FILE1 PARAMETERS..],
    [..FILE2 PARAMETERS..],
    [..FILE3 PARAMETERS..],
    ....
}

When WRITERNAME matches the name given in the definition the writer is called. Then we have two kinds of
parameters: disk and file parameters. For each of these is a set of all possible parameters and a set of non-optional
parameters. If a parameter is give that is not included in the allParameters set Kick Assembler will generate an
error. The same will happen if a non optional parameter is missing.

The execute method has parameters of two new interfaces:

public interface IDiskData {
   IParameterMap getParameters();
   List<IDiskFileData> getFiles();
}

public interface IDiskFileData {
   IParameterMap getParameters();
   List<IMemoryBlock> getMemoryBlocks();
}

These represent the given parameters and provides the values and the bytes which should be stored in each file.

When creating the output file, use the IEngine object to open an output stream for storing the bytes. For details,
refer to the example project.

17.5.5. Archive Plugins
You can collect more plugins in one archive. This makes it possible to register them with only one plugin

directive. To create an archive you implement a class of the IArchive interface:

public interface IArchive extends IPlugin {
   public List<IPlugin> getPluginObjects();
}

An implementation could look like this:

public class MyArchive implements IArchive{
   @Override
   public List<Object> getPluginObjects() {
      List<Object> list = new ArrayList<Object>();
      list.add(new MyMacro());
      list.add(new MyModifyer());
      return list;



3rd Party Java plugins

84

   }
}

The following plugin directive will then register both MyMacro and MyModifyer.

.plugin "test.plugins.archives.MyArchive"

17.5.6. AutoIncludeFile Plugins
AutoIncludeFile plugins are used to include source code files in archives. It could be that you want to bundle

a source file containing a depack macro together with a segment modifier that packs a segment.

AutoIncludeFile plugins have an interface like all other plugins, but in 99% of all cases you can use the standard
implementation included in the KickAssembler jar. Suppose you have a source file (MyAutoInclude.asm) with a
macro you want to auto include when importing the archive:

//FILE: MyAutoInclude.asm
.macro SetColor(color) {
   lda #color
   sta $d020
}

Then you put MyAutoInclude.asm in your jar-file in the package 'include' and add an object of the class Au-
toIncludeFile to your archive. You archive could look like this:

public class MyArchive implements IArchive{

   @Override
   public List<IPlugin> getPluginObjects() {
      ArrayList<IPlugin> plugins = new ArrayList<>(); 
      plugins.add(new SomePlugin1());
      plugins.add(new SomePlugin2());
      plugins.add(new AutoIncludeFile("MyArcive.jar",getClass(),"/include/
MyAutoInclude.asm"));
      return plugins;
   }
}

In the AutoIncludeFile-constructor you give:

1. The jar-name - for use when printing error messages

2. A random 'class'-object from the jar - this is used to open the resource.

3. A path to the resource - the placement inside the jar.

The file will now be compiled with the rest of the source if the archive is imported.

For completeness, here is the IAutoIncludeFile-interface, but as mentioned, you probably wont need it.

public interface IAutoIncludeFile extends IPlugin {
   AutoIncludeFileDefinition getDefinition();
   InputStream openStream(); 
}

public class AutoIncludeFileDefinition {
   private String filePath;
   private String jarName;
}



85

Appendix A. Quick Reference

A.1. Command Line Options

Table A.1. Command Line Options

Option Example Description

-afo -afo Allows file output outside the output
dir.

-aom -aom Allow overlapping memory blocks.
With this option, overlapping memo-
ry blocks will produce a warning in-
stead of an error.

-asminfo -asminfo all Turn on exporting of assemble info

-asminfofile -asminfofile myAsmInfo.txt Tells where to output the asminfo
file.

-binfile -binfile Sets the output to be a bin file instead
of a prg file. The difference between
a bin and a prg file is that the bin file
doesn’t contain the two start address
bytes.

-bytedump -bytebump Dumps the assembled bytes in the
file ByteDump.txt together with the
code that generated them.

-bytedumpfile -bytebumpfile myfile.txt Same as -bytedump but with an argu-
ment specifying the name of the file

-cfgfile -cfgfile "../../MyConfig.Cfg" Use additional configuration file
(like KickAss.cfg). Supply the file as
an absolute path, or a path relative
to the source file. You can have as
many additional config files as you
want.

-debug -debug For development use. Adds addition-
al debug info, like stacktraces, to the
output.

-debugdump -debugdump Dumps an infofile for c64 debugger
that maps assembled bytes to loca-
tions in the sourcecode.

-define -define DEBUG Defines a preprocessor symbol.

-dtv -dtv Enables DTV opcodes.

-excludeillegal -excludeillegal Exclude the illegal opcodes from the
instruction set

-execute -execute "x64 +sound" Execute a given program with the as-
sembled file as argument. You can
use this to start a C64 emulator with
the assembled program if the assem-
bling is successful.

-executelog -executelog execlog.txt If set, this generates a logfile for the
output of the program executed using
the '-execute' option.



Quick Reference

86

Option Example Description

-fillbyte -fillbyte 255 Sets the byte used to fill the space be-
tween memoryblocks in the prg file.

-libdir -libdir ../stdLib Defines a library path where the as-
sembler will look when it tries to
open external files.

-log -log logfile.txt Prints the output of the assembler to
a logfile.

-maxaddr -maxaddr 8191 Sets the upper limit for the memory,
default is 65535. Setting a negative
value means unlimited memory.

-mbfiles -mbfiles One file will be saved for each mem-
ory block instead of one big file.

-noeval -noeval Parse the sourcecode but exit before
evaluation.

-o -o dots.prg Sets the output file. Default is the in-
put filename with a ‘.prg’ as suffix.

-odir -odir out Sets the output dir. Outputfiles will
be output in this dir (or relative to this
dir)

-pseudoc3x -pseudoc3x Enables semicolon between pseudo-
command arguments.

-replacefile -replacefile c:\source.asm c:
\replacement.asm

Replaces a given sourcefile with an-
other everytime it's referred.

-showmem -showmem Show a memory map after assem-
bling.

-symbolfile -symbolfile Genrates a .sym file with the re-
solved symbols. The file can be used
in other sources with the .import
source directive.

-symbolfiledir -symbolfiledir sources/symbolfiles Specifies the folder in which the
symbolfile is written. If none is giv-
en, its written next to the sourcefile.

-time -time Displays the assemble time.

-vicesymbols -vicesymbols Generates a label file for VICE.

-warningsoff -warningsoff Turns off warning messages.

:name= :x=34 :version=beta2 :path="c:/C
64/"

The ‘:’ notation denotes string vari-
ables passed to the script. They
can be accessed by using the ‘cmd-
LineVars’ hashtable which is avail-
able from the script.

A.2. Preprocessor Directives

Table A.2. Preprocessor directives

Preprocessor Directives Example Description

#define #define DEBUG Defines a preprocessor symbol.

#elif #elif TEST The combination of an #else and an
#if preprocessor directive.



Quick Reference

87

Preprocessor Directives Example Description

#else #else Used after an #if to start an else block
which is executed if the condition is
false.

#endif #endif Marks the end of an #if/#else block.

#if #if !DEBUG Discards the sourcecode after the #if-
directive if the condition is false.

#import #import "file2.asm" Imports another sourcefile.

#importif #importif !DEBUG "file2.asm" Imports another sourcefile if the giv-
en expression is evaluated to true.

#importonce #importonce Make the assembler skip the current
file if it has already been imported.

#undef #undef DEBUG Removes the definition of a pre-
processor symbol.

A.3. Mnemonics

A.3.1. Standard 6502 Mnemonics
The standard 6502 instructions are as follows.

Table A.3. Standard 6502 Mnemonics

cmd noarg imm zp zpx zpy izx izy abs Abx aby ind rel

adc $69 $65 $75 $61 $71 $6d $7d $79

and $29 $25 $35 $21 $31 $2d $3d $39

asl $0a $06 $16 $0e $1e

bcc $90

bcs $b0

beq $f0

bit $24 $2c

bmi $30

bne $d0

bpl $10

brk $00

bvc $50

bvs $70

clc $18

cld $d8

cli $58

clv $b8

cmp $c9 $c5 $d5 $c1 $d1 $cd $dd $d9

cpx $e0 $e4 $ec

cpy $c0 $c4 $cc

dec $c6 $d6 $ce $de

dex $ca



Quick Reference

88

cmd noarg imm zp zpx zpy izx izy abs Abx aby ind rel

dey $88

eor $49 $45 $55 $41 $51 $4d $5d $59

inc $e6 $f6 $ee $fe

inx $e8

iny $c8

jmp $4c $6c

jsr $20

lda $a9 $a5 $b5 $a1 $b1 $ad $bd $b9

ldx $a2 $a6 $b6 $ae $be

ldy $a0 $a4 $b4 $ac $bc

lsr $4a $46 $56 $4e $5e

nop $ea

ora $09 $05 $15 $01 $11 $0d $1d $19

pha $48

php $08

pla $68

plp $28

rol $2a $26 $36 $2e $3e

ror $6a $66 $76 $6e $7e

rti $40

rts $60

sbc $e9 $e5 $f5 $e1 $f1 $ed $fd $f9

sec $38

sed $f8

sei $78

sta $85 $95 $81 $91 $8d $9d $99

stx $86 $96 $8e

sty $84 $94 $8c

tax $aa

tay $a8

tsx $ba

txa $8a

txs $9a

tya $98

A.3.2. Illegal 6502 Mnemonics
The illegal instruction set contains the standard 6502 mnemonics plus the below modifications. This is the

default instruction set for Kick Assembler. You get it by writing '.cpu _6502'

Table A.4. Illegal 6502 Mnemonics

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

ahx $93 $9f



Quick Reference

89

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

alr $4b

anc $0b

anc2 $2b

arr $6b

axs $cb

dcp $c7 $d7 $c3 $d3 $cf $df $db

isc $e7 $f7 $e3 $f3 $ef $ff $fb

las $bb

lax $ab $a7 $b7 $a3 $b3 $af $bf

nop $ea $80 $04 $14 $0c $1c

rla $27 $37 $23 $33 $2f $3f $3b

rra $67 $77 $63 $73 $6f $7f $7b

sax $87 $97 $83 $8f

sbc2 $eb

shx $9e

shy $9c

slo $07 $17 $03 $13 $0f $1f $1b

sre $47 $57 $43 $53 $4f $5f $5b

tas $9b

xaa $8b

A.3.3. DTV
The DTV instruction set contains the standard+illegal 6502 mnemonics plus the below modifications. You get

it by writing '.cpu dtv'

Table A.5. DTV Mnemonics

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

bra $12

sac $32

sir $42

A.3.4. 65c02 Mnemonics
The 65c02 instruction set contains the standard 6502 mnemonics plus the below modifications. Notice the 3

extra addressing modes. You get it by writing '.cpu _65c02'

Table A.6. 65c02 Mnemonics

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel izp zprel indx

adc $69 $65 $75 $61 $71 $6d $7d $79 $72

and $29 $25 $35 $21 $31 $2d $3d $39 $32

bbr0 $0f

bbr1 $1f

bbr2 $2f

bbr3 $3f



Quick Reference

90

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel izp zprel indx

bbr4 $4f

bbr5 $5f

bbr6 $6f

bbr7 $7f

bbs0 $8f

bbs1 $9f

bbs2 $af

bbs3 $bf

bbs4 $cf

bbs5 $df

bbs6 $ef

bbs7 $ff

bit $89 $24 $34 $2c $3c

bra $80

cmp $c9 $c5 $d5 $c1 $d1 $cd $dd $d9 $d2

dec $3a $c6 $d6 $ce $de

eor $49 $45 $55 $41 $51 $4d $5d $59 $52

inc $1a $e6 $f6 $ee $fe

jmp $4c $6c $7c

lda $a9 $a5 $b5 $a1 $b1 $ad $bd $b9 $b2

ora $09 $05 $15 $01 $11 $0d $1d $19 $12

phx $da

phy $5a

plx $fa

ply $7a

rmb0 $07

rmb1 $17

rmb2 $27

rmb3 $37

rmb4 $47

rmb5 $57

rmb6 $67

rmb7 $77

sbc $e9 $e5 $f5 $e1 $f1 $ed $fd $f9 $f2

smb0 $87

smb1 $97

smb2 $a7

smb3 $b7

smb4 $c7

smb5 $d7

smb6 $e7



Quick Reference

91

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel izp zprel indx

smb7 $f7

sta $85 $95 $81 $91 $8d $9d $99 $92

stp $db

stz $64 $74 $9c $9e

trb $14 $1c

tsb $04 $0c

wai $cb

A.4. Assembler Directives

Table A.7. Directives

Directive Example Description

* *=$1000 Sets the memory position to a given
value.

.align .align $100 Aligns the memory position with
the given value. Ex. '.align $100' at
memory position $1234 will set the
position to $1300.

.assert .assert "Test 1",2+2,4 Asserts that two expressions or code-
blocks are equal.

.asserterror .asserterror "Test 2", List().get(27) Asserts that a given expression or
codeblock generates an error.

.break .break Puts a breakpoint on the next gener-
ated bytes.

.by .by $01,$02,$03 An alias for '.byte'.

.byte .byte $01,$02,$03 Outputs bytes.

.const .const DELAY=7 Defines a constant.

.define .define width, height {...} Executes a block of directives in
'functionmode' (faster) to define val-
ues.

.disk .disk [..disk pararamters..] {..filepa-
rameters..}

Creates a d64 image file.

.dw .dw $12341234 An alias for '.dword'.

.dword .dword $12341234 Outputs doublewords (4 byte val-
ues).

.encoding .encoding "screencode_upper" Sets the character encoding.

.enum .enum {on, off} Defines a series of constants.

.error .error "not good!" Creates an user raised error.

.errorif .errorif x>10 "not good!" Creates an user raised error if condi-
tion is evaluated to true.

.eval .eval x=x+y/2 Evaluates a script expression.

.file .file [name="myfile.prg"
segments="Code, Data"]

Creates a prg or bin file from the giv-
en segments.

.filemodify .filemodify Encrypt(33) Modify the output of the current
source file with the given modifier.



Quick Reference

92

Directive Example Description

.filenamespace .filenamespace myspace Creates a namespace for all the
following directives in the current
source file.

.fill .fill 10, i*2 Fills a number of bytes with the value
of a given expression.

.fillword .fillword 10, i*$102 Fills a number of words with the val-
ue of a given expression.

.for .for(var i;i<10;i++) {...} Creates a for loop.

.function .function area(h,w) {..} Defines a function.

.if .if(x>10) {...} Executes code if the given condition
is true.

.import binary .import binary "Music.bin" Imports a binary file.

.import c64 .import c64 "Music.c64" Imports a c64 files. Same as '.import
binary', but ignores the two address
bytes at the start of the file.

.import source .import source "MyLib.asm" Imports another source file. (Depri-
cated, use #import instead)

.import text .import text "scroll.txt" Imports a text file.

.importonce .importonce Make the assembler skip the current
file if it has already been import-
ed. (Depricated, use #importonce in-
stead)

.label .label color=$d020 Assigns a given expression to a label.

.lohifill .lohifill $100, i*40 Fills two table with hi and lo byte of
the given expression. Address of the
tables can be read by connecting a la-
bel.

.macro .macro BasicUpstart() {...} Defines a macro.

.memblock .memblock "New block" Defines a new memoryblock at the
current memoryposition.

.modify .modify Encrypt(27) {...} Modifies the output of a codeblock
using the given modifier.

.namespace .namespace myspace {..} Creates a local namespace.

.pc .pc=$1000 Same as '*='

.plugin .plugin "plugins.macros.MyMacro" Tells the assembler to look for a plu-
gin at the given java-package path.

.print .print "Hello" Prints a message to the console in the
last pass.

.printnow .printnow "Hello now" Prints a message to the console im-
mediately.

.pseudocommand .pseudocommand mov src:tar {...} Defines a pseudocommand.

.pseudopc .pseudopc $2000 {...} Sets the program counter to some-
thing else than the actual memory
position.

.return .return 27 Used inside functions to return a val-
ue.

.segment .segment Data "My Data" Switches to another segment.



Quick Reference

93

Directive Example Description

.segmentdef .segmentdef Data [start=$1000] Defines a segment.

.segmentout .segmentout
[segments="DRIVE_CODE"]

Output the bytes of an intermedi-
ate segment to the current memory-
block.

.struct .struct Point {x,y} Creates a user defined structure.

.te .te "hello" An alias for '.text'.

.text .text "hello" Dumps text bytes to memory.

.var .var x=27 Defines a variable.

.while .while(i<10) {...} Creates a while loop.

.wo .wo $1000,$1012 An alias for '.word'.

.word .word $1000,$1012 Outputs words (two bytes values),

.zp .zp { label: .byte 0 ... } Marks unresolved labels as being in
the zeropage.

A.5. Value Types

Table A.8. Value Types

Type Example Description

65xxArgument ($10),y A value that defines an argument
given to a mnemnonic.

BinaryFile LoadBinary("file.bin", "") A value containing byte data.

Boolean true Either true or false.

Char 'x' A character.

Hashtable Hashtable() A value representing a hashtable.

List List() A list value.

Matrix Matrix() Represents a 4x4 matrix.

Null null A null value.

Number 27.4 A floating point number.

OutputFile createFile("breakpoints.txt") An value representing an output file.

Picture LoadPicture("blob.gif") The contents of a loaded picture.

SidFile LoadSid("music.sid") The contents of a sid file.

String "Hello" A string value.

Struct MyStruct(1,2) Represents a user defined structure.

Vector Vector(1,2,3) A 3d vector value.



94

Appendix B. Technical Details
In Kick Assembler 3 some rather advanced techniques have been implemented to make the assembling more

flexible and correct. I'll describe some of the main points here. YOU DON'T NEED TO KNOW THIS, but if you
are curious about technical details then read on.

B.1. The flexible Parse Algorithm
Kick Assembler 3 uses a flexible pass algorithm, which parses each assembler command or directive as much

as possible in each pass. Some commands can be finished in first pass, such as lda #10 or sta $1000. But if a
command depends on information not yet given, like ‘jmp routine’ where the routine label hasn't been defined yet,
an extra pass is required. Kick Assembler keeps executing passes until the assembling is finished or no progress
has been made. You can write programs that only need one pass, but most programs will need two or more. This
approach is more flexible and gives advantages over normal fixed pass assembling. All directives don't have to be
in the same phase of assembling, which gives some nice possibilities for future directives.

B.2. Recording of Side Effects
Side effects of directives are now recorded and replayed the subsequent passes. Consider the following eval

directive: .eval a=[5+8/2+1]*10.In the first pass the calculation [5+8/2 + 1]*10 will be executed and find the result
100, which will be assigned to a. In the next pass no calculation is done, only the side effect (a=100) is executed.
This speeds up programs with heavy scripting, since the script only has to execute once.

B.3. Function Mode and Asm Mode
Kick assembler has two modes for executing directives. ‘Function Mode’ is used when the directive is placed

inside a function or .define directive, otherwise ‘Asm Mode’ is used. ‘Function Mode’ is executed fast but is
restricted to script commands only (.var, .const, .for, etc.), while ‘Asm Mode’ can handle all directives and records
the side effects as described in previous section. All evaluation starts in ‘Asm Mode’ and enters ‘Function Mode’
if you get inside the body a function or .define directive. This means that at some point there is always a directive
that records the result of the evaluation.

B.4. Invalid Value Calculations
Invalid values occur when the information used to calculate a value that isn't available yet. Usually this starts

with an unresolved label value, which is defined later in the source code. Normally you would stop assembling
the current directive once you reach an invalid value, but that might leave out some side effects you did intend
to happen, so instead of stopping, the assembler now carries on operating on the invalid values. So an unresolved
label is just an unresolved Number value. If you add two number values and one of them is invalid then the result
will be another invalid number value. If you compare two invalid numbers then you get an invalid boolean and
so forth. This helps to track down which values to invalidate. If for example you use an invalid number as index
in a set function on a list, you must invalidate the whole list since you don't know which element is overwritten.
Some examples of invalid value calculations:

4+InvalidNumber -> InvalidNumber
InvalidNumber != 5 ->  InvalidBoolean
myList.set(3, InvalidNumber) -> [?,?,InvalidNumber]
myList.set(InvalidNumber, “Hello”) -> InvalidList
myList.set(4+4*InvalidNumber, “Hello”) -> InvalidList



95

Appendix C. Going from Version 3.x
to 4.0

C.1. The new features
The parser have been rewritten which made some new features possible:

1. You can now use *=$1000 like in good old Turbo Assembler.

2. You can now use soft parenthesis. Kick Assembler will know by the context when it means an indirect adressing
mode and when its a normal parenthesis.

3. A preprocessor have been implemented. You can now use the commands #define, #undefine, #if, #else, #elif
and #endif (Those who know the C# preprocessor will be familiar with these).

4. There are also preprocessor commands for importing source: #import, #importif, #importonce. #import and
#importonce works as the directives known from version 3.x. , but works better together with the preprocessor.
#importif supports conditional imports as a simple oneliner.

5. The colon in front of macro and pseudocommand calls are now optional.

6. You can now add an optional ';' after directives and mnemonics. This is usefull if you are use to program
languages like C++/Java or C# where these are required.

7. Kick Assembler now report multiple errors in the parsing phase instead of just the first.

8. Kick Assembler can now report syntax elements back to editors. (IN PROGRESS)

9. Kick Assembler can now report syntax errors back to editors, without starting to evaluate the code. (IN PRO-
GRESS)

10.The new parser is faster. The Kick Assembler test suite now assembles in less than half of the time it took
when using v3.40.

The scoping/namespace system has been upgraded:

1. Functions, Macros and PseudoCommands are now put in the current namespace when defined. (In 3.x only
symbols where scoped)

2. Namespaces can now be reused (Several files can use the same namespace without getting a 'symbol already
defined' error).

3. There is now a getNamespace() function that tells the current namespace.

4. Use '@' as prefix when defining a symbol/function/macro/pseudocommand to put it in the root-scope or root-
namespace.

5. Use '@' as prefix when referencing a symbol/function/macro/pseudocommand to look it up in the root-scope
or root-namespace.

6. NOTICE: There are currently no way of seeing functions/macros/pseudocommands from the outside of a name-
space so place your public library functions in the root namespace.

7. Import now always imports to the root scope (Doesn't use the scope at the import call as parent scope)

8. Function/macro/pseudocommand calls now has the definition scope (where the function/macro/pseudocom-
mand is defined) as parent scope during the call. This is consistent with most language like Java, C# etc.



Going from Version 3.x to 4.0

96

9. All references to a symbol/function/macro/pseudocommand is now resolved in the prepass'. This means you
will get errors for misspelled symbols at once. It also means that you can get errors from non-executed code.

10.Resolving symbols in the prepass' gives the same or slightly slower assemble times for performance light
sources, but for heavy calculations it is much faster (Example: The fractal2 example from v3.x assembles 38%
faster with Kick Assembler 4)

Other news are:

1. There is now a .while directive

2. There is now updated 'quick reference' appendix of options, preprocessor directives, directives and value types.

3. There is now an .encoding directive to switch between petscii/screencode encoding and uppercase/mixedcase.

4. Lines starting with # in KickAss.cfg are now ignored.

5. The source in the manual have been updated

6. The example suite has been rewritten (Its worth a look)

7. A converter to help convert from v3.x to 4.x is included in the distributed zip-file.

C.2. Differences in syntax
There is a small change in the syntax between version 3.x and 4.x, which means that some code might not

compile right away - but don't worry, we made a converter to convert sources to the new syntax and have a
command line option that will make most code run.

In Kick Assembler 3.x the assembler automatically knows when one command ends and another begins. This
means you can write several commands in one line like this:

    sei lda #$1b sta $d011 lda #$32 sta $d012  

In version 4.x you have to separate commands by either a line shift or a semicolon. So in version 4.x the above
looks like this:

    sei; lda #$1b; sta $d011; lda #$32; sta $d012 

In general, this is not a problem since you usually put each mnemonic on a separate line. If you want a command
to span several lines, use a parenthesis (hard or soft). Since KickAssembler balances the parenthesis sets, only
newlines on the outer level will terminate the command so you can write like this:

lda #(
     7 * calculateSomething(a,b)
     + 3 * calculateSomeMore(x,y,z)
)

The use of semicolon to terminate commands collide with the old pseudo commands which use the semicolon to
separate its arguments. To be compatible with old pseudo commands, use the -pseudo3x option at the command
line. You will not be able to write several commands after a pseudocommand call, but your old code will compile.
A better option is to convert your code to the new syntax where all semicolons are changed to normal colons. (You
can use the converter enclosed in the KickAssembler zip file):

// Pseudocommand calls in V3.x
:mov #10 ; data,x

// Pseudocommand calls in V4.x
mov #10 : data,x               // The colon in front is now optional



Going from Version 3.x to 4.0

97

C.3. Difference in behavior
Since all references is now checked prepass, dead code can cause errors. For example, a function that never

gets called will now generate an error:

.function myFunc1() {
   .var x = unknownSymbol; // Error: Undefined symbol
}

If-directives inside functions/defines is now scoped, meaning you can't do like this anymore (This is already
the case for .if directives outside functions/defines):

.function myFunc1(flag) {
   .if (flag)
      .var message = "flag is true"
   else 
      .var message = "flag is false"

   .print message  // Error - 'message' is unknown
}

C.4. Converting 3.x sources
To make the transition to from version 3.x to 4 easy, use the converter to convert old source files.

First, take a backup of your source before converting. The source files will be overwritten so its good to have
a copy of the original source files. In case there comes updates to the converter, you need the original v3 source
code to convert again.

Step one in converting is starting up the converter. This is done by the following command:

java -jar KickAss3To4Converter.jar

Step two is selecting what to convert. This is done by checking the check boxes in the upper panel. The ones
already checked are meant to be converted (You should have a good reason to un check them). The non checked
('Replace .pc with *') are cosmetic changes.

Step three in converting is selecting which source files to convert. To do so, use the 3 buttons:

1. 'Add Files' - Gives you a dialog from which you can pick individual source files.

2. 'Add SourceDir' - Gives you a dialog from which you can add source files of a given type(s) from a source
directory and it's subdirectories.

3. 'Remove files' - Removes the selected files of the current file list.

The selected files will appear in the list in the center.

When done, execute the final step by pressing the 'Convert' button, and the conversion will be executed.

The converter will take care of most of the transitions. Currently know issues are:

1. If a command spans more than one line and doesn't contain a kind of parenthesis (soft, hard or curly), you might
have to set one as explained in the previous section.


	Kick Assembler Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Running the Assembler
	2.2. An Example Interrupt
	2.3. Configuring the Assembler

	Chapter 3. Basic Assembler Functionality
	3.1. Mnemonics
	3.2. Argument Types
	3.3. Number formats
	3.4. Labels, Arguments Labels and Multi Labels
	3.5. Memory Directives
	3.6. Data Directives
	3.7. Encoding
	3.8. Importing source code
	3.9. Importing data
	3.10. Comments
	3.11. Console Output
	3.12. Breakpoints and watches

	Chapter 4. Introducing the Script Language
	4.1. Expressions
	4.2. Variables, Constants and User Defined Labels
	4.3. Scoping
	4.4. Numeric Values
	4.5. Parentheses
	4.6. String Values
	4.7. Char Values
	4.8. The Math Library

	Chapter 5. Branching and Looping
	5.1. Boolean Values
	5.2. The .if directive
	5.3. Question mark if's
	5.4. The .for directive
	5.5. The .while directive
	5.6. Optimization Considerations when using Loops

	Chapter 6. Data Structures
	6.1. User Defined Structures
	6.2. List Values
	6.3. Working with Mutable Values
	6.4. Hashtable Values

	Chapter 7. Functions and Macros
	7.1. Functions
	7.2. Macros
	7.3. Pseudo Commands

	Chapter 8. Preprocessor
	8.1. Defining preprocessor symbols
	8.2. Deciding what gets included
	8.3. Importing files
	8.4. List of preprocessor directives
	8.5. Boolean operators

	Chapter 9. Scopes and Namespaces
	9.1. Scopes
	9.2. Namespaces
	9.3. Scoping hierarchy
	9.4. The Namespace Directives
	9.5. Escaping the current scope or namespace
	9.6. Label Scopes
	9.7. Accessing Local Labels of Macros and Pseudocommands
	9.8. Accessing Local Labels of For / While loops
	9.9. Accessing Local Labels of if's

	Chapter 10. Segments
	10.1. Introduction
	10.2. Some quick examples
	10.3. Segments
	10.4. Where did the output go?
	10.5. The Default segment
	10.6. Naming memory blocks while switching segment
	10.7. The default memory block
	10.8. Including other segments
	10.9. Including .prg files
	10.10. Including sid files
	10.11. Boundaries
	10.12. Overlapping memory block
	10.13. Segment Modifiers
	10.14. Intermediate segments
	10.15. The .segmentout directive
	10.16. Debugger data
	10.17. List of segment parameters

	Chapter 11. PRG files and D64 Disks
	11.1. Introduction
	11.2. Parameter Maps
	11.3. The File Directive
	11.4. The Disk Directive
	11.5. Disk Parameters
	11.6. File Parameters
	11.7. Custom Disk Writers

	Chapter 12. Import and Export
	12.1. Passing Command Line Arguments to the Script
	12.2. Import of Binary Files
	12.3. Import of SID Files
	12.4. Converting Graphics
	12.5. Writing to User Defined Files
	12.6. Exporting Labels to other Sourcefiles
	12.7. Exporting Labels to VICE

	Chapter 13. Modifiers
	13.1. Modify Directives

	Chapter 14. Special Features
	14.1. Name and path of the sourcefile
	14.2. Basic Upstart Program
	14.3. Opcode Constants
	14.4. Colour Constants
	14.5. Making 3D Calculations

	Chapter 15. Assemble Information
	15.1. The AsmInfo option
	15.2. Realtime feedback from the assembler
	15.3. The AsmInfo file format
	15.4. The sections
	15.4.1. Libraries section
	15.4.2. Directives section
	15.4.3. Preprocessor directives section
	15.4.4. Files section
	15.4.5. Syntax section
	15.4.6. Errors section


	Chapter 16. Testing
	16.1. Asserting expressions
	16.2. Asserting errors in expressions
	16.3. Asserting code
	16.4. Asserting errors in code

	Chapter 17. 3rd Party Java plugins
	17.1. The Test Project
	17.2. Registering your Plugins
	17.3. A quick Example (Macros)
	17.4. General Communication interfaces
	17.4.1. The IEngine Interface
	17.4.2. The IValue Interface
	17.4.3. The ISourceRange Interface
	17.4.4. The IMemoryBlock Interface
	17.4.5. The IParameterMap Interface

	17.5. The Plugins
	17.5.1. Macro Plugins
	17.5.2. Modifier Plugins
	17.5.3. SegmentModifier plugins
	17.5.4. DiskWriter Plugins
	17.5.5. Archive Plugins
	17.5.6. AutoIncludeFile Plugins


	Appendix A. Quick Reference
	A.1. Command Line Options
	A.2. Preprocessor Directives
	A.3. Mnemonics
	A.3.1. Standard 6502 Mnemonics
	A.3.2. Illegal 6502 Mnemonics
	A.3.3. DTV
	A.3.4. 65c02 Mnemonics

	A.4. Assembler Directives
	A.5. Value Types

	Appendix B. Technical Details
	B.1. The flexible Parse Algorithm
	B.2. Recording of Side Effects
	B.3. Function Mode and Asm Mode
	B.4. Invalid Value Calculations

	Appendix C. Going from Version 3.x to 4.0
	C.1. The new features
	C.2. Differences in syntax
	C.3. Difference in behavior
	C.4. Converting 3.x sources


