Kick Assembler

Reference M anual

By Mads Nielsen

Table of Contents

O [gL oo (01T o o H PSP SPPPTTRN
2. GEIING SEBITEAeeveieeeete ettt ettt ettt et et ettt et et e enaa s
2.1 RUNNING the ASSEMDIEeeiei e e ettt e et e e e et e e e enaaeeees
2.2, AN EXAMPIE INEEITUDE ... ettt ettt e et e et et eeeebaes
2.3. Configuring the ASSEMDIEY ... e e
3. Basic Assembler FUNCHONEIITYcoouuuiiiiiiie e et e et e e e et e eeena e eenes
3L IMINEITIONICS .ttt ettt ettt ettt ettt ettt ettt ettt e e ettt e et e e et e e et e a e e nna e e nnans
I N (01U 0= 0| Y o= PP
3.3 INUMDEE TOMMELS ...ttt ettt e et e et e e et e e e e et e e e e eaa s
3.4. Labels, Arguments Labels and Multi LabelScoouiiiiiiiiii e
3.5, MEMOIY DITECHIVES ... ittt ettt et e et e et e e e eaa s
3.6, DA DITECHIVES ... ettt ettt e e et et et et eenaa s
I = 0 Tolo o [oo PP PP UPPTT
3.8. IMPOItiNG SOUIMCE COUReeieieeiiii ettt ettt ettt ettt e e et ettt e e e e et e e ennans 10
3.9, IMPOITING GAEA ... eevte ettt ettt e e et e et e e et et e e e e et eeeene s
.10, COMIMENESeetet ettt ettt et et et e e et et e et r et e e e et e e e e e et e e e
311, CONSOIE OULPUL ...eevteeeeeit e ettt e ettt e ettt e et et e ettt e e et et e et e et e e et et e e et st e e e enbaes
3.12. Breakpoints and WELCNESiiiiii ittt et e e e e e e e e eee 12
4. Introducing the SCriPt LANQUETEuueeertieeeeiii ettt ettt et e et e et e e et e e et e e e eaa e e eenans 14
A1, EXPIESSIONS ...eeetieeteete ettt ettt ettt et et a et e e eaan s
4.2. Variables, Constants and User Defined LabelS ..., 14
IS oo o 1 1 O PO PP PPPPPTPR PPN
A4, NUMEITC VBIUBS ...ttt ettt ettt et e e e e e e ennas
A5, PaIENTNESES ...ttt
A.6. SHNG VBIUBS ...ttt ettt e ettt e e et e e e b s
A7, Char VBIUES ... ettt ettt e e e e
4.8. The M@ LIDIarY ...ooeeneieiii ettt e e es 20
5. Branching @nt LOOPINGeeeutueeeiti e eett e et e ettt e ettt et ee e et eet s e e e e st e e e e eebn s e e eerbnaeeeentnaeaees 22
5.1 BOOIEAN VEIUES ...ttt et eaaas 22
5.2, The Lif AIFECHIVE ...t ettt e s
5.3, QUESEION MAIK 1S ..t eaas 23
5.4, The FOr GIFECHIVE ...ttt ettt e e e e enaans
5.5. The WhIle QITECHIVEo e
5.6. Optimization Considerations When USING LOOPSuuiiiiiiiieiiiiiieeeii e e 25
B. DALA SITUCLUMNES ...ttt ettt et e e et ettt e et r et et e e et e e et e ea e e enanee 26
6.1, USer DEfINEO SIUCTUIES ...ttt 26
B.2. LIS VAIUES ...ttt ettt e
6.3. Working With MUtable VEIUESuuiiiiii e 28
B.4. Hashtahle VAIUEScooiiiiiiii ettt e e 28
7. FUNCLIONS 8NGO IMBETOS ...ttt ettt e et e et et e e e et e e e era s 30
7.1 FUNCHIONS ...ttt ettt e ettt e et e et e et e e et e e b e et e na e e enaans 30
A Y=o o= S PP TUPTTRPRTPIN
7.3. PSRUAO COMIMENGS ...ttt ettt e et e e et e e e et e e e e aeeena s 31
8. PIEPIOCESSON ... ceeiiet ettt ettt et ettt et 34
8.1. Defining PreproCeSSOr SYMDOIScieti ettt et e e et e e 34
8.2. Deciding What getS iNCIUAEAoouuniiiiiii e e e e e 34
8.3, IMPOITING FIIES ...ttt e e et e e e e e s 35
8.4. List Of PreproCeSSOr QiFECHIVESccuvuiiiiii et et e e et eeat e eenes 35
8.5. BOOIEAN OPEIBIONS ... eieeii ettt ettt ettt e et et e e e e 36
9. SCOPES AN NAIMESPECES ...t eeeetii ettt ettt ettt et e et e ettt e et et e et e bt e e e e tb e e e era s 37
0.0, SCOPIES ..teeiet ettt ettt e et et 37
0.2, NAIMESPACESveeriie ettt ettt et e e et et ettt e e e e et n et et e e e e e e e e 37
9.3. SCOPING NIEIAICNYeeiiie ettt e e e e e e 38
9.4. The NamMeSPACE DIFECHIVESuuiieiiiiie ettt ettt e e 38
9.5. Escaping the CUrrent SCOPE OF NAMESPECEccuutueeeettnaeeettaeeeettaeeeent e eeert e aeeert e eeenenaaaeens 39

Kick Assembler Manua

S = o1 IS o o= PP 40

9.7. Accessing Local Labels of Macros and Pseudocommandsooovvveviiiiiiiieiiin e e 41

9.8. Accessing Local Labels of For / Whil€ l00PScvvniiiiciie e 42

9.9. Accessing Local Labels Of 'S ..ouuiiii e 42

B0, SBOIMIBIIES ..ttt ettt 43
050 1 oo [0 1o TSP 43

10.2. SOME QUICK EXAMPIES . .ovuiiiii et e e e e e e et e e et e e et e e et e e et e eaanaaes 43

O <o 11 o SO PPIN 44

10.4. Where did the OULPUL gO?cvviiiiii e e e e e e e e e e e e et e e e eees 45

10.5. The DEfaUlt SEOMIENT .. .ouuiiii e e e e e e e e e e e e e et s e e e e et e e et e e eaneeeees 45

10.6. Naming memory blocks while switching Segmentcoiiiii i 45

10.7. The default MemMOry BIOCKoiiiiiiie e e eeas 47

10.8. INClUdING OtNEr SEOMIENTSuiiii i e e e e e e e e e e e et e e e e e eaaaeeees 48

O e I B o 10 o [g To N o] o I 1 = 48
0 50 0 T 1 T 10 1 o TS T I 1= 48
00 O =TT g = =SSP 49
10.12. Overlapping MEMOrY BIOCKcovuiiiiic e e e e e aes 50
10.13. SEgMENE MOOITIES ...iiieiiii e e e e e e e e e e e e e e e eaneees 50
10.14. INErMEAIAEE SEOMENES ...ivvuieii i eeii et e et et e et e e e e e e e e et e e et e e et e e et e e ean e san e eatnaesnnaeeens 51
10.15. The .SegMENtOUL QIrECHIVEiiee i e e e e e e e e e e e e et e e eaaaaees 51
O ST BT oo o = g = - 52
10.17. List Of SEgMENT PArBMELENS .. oovuiiii et e e e et e e e e e e e e e e et e e e e e et e e st e e eanaeeaneens 52

11. PRG fil€S @0 DB DISKS ...euuiiiiiiiieieiii ettt e et e e e e e e e e e e et e e e et e e e et e e e e et e e e eaan s 54
00 O o [1o T SRR 54

10,2, ParamMELEr MBS ..vuieiiiiieiee et e e e e e e e e e e e e e 54

R R I o To N e L BT o PP 54

o I T BT Es QB] = 1Y SO 55

T B N o= = 01T [PSP 55

T e Lo T 4 = PP 56

11.7. CUSEOM DiSK WITEIS oetiieeiii ettt ettt e e ettt e e ettt e e e et s e e e e atnaeeeeatnneeeeatnaeeeen 57

b2 1 oo A= 1T I (0 58
12.1. Passing Command Line Arguments to the SCriptc.ooviiiiiiiii i e 58

12.2. Import Of BINAIY FIES ...ooviiiiii e e e e e e e 58

12.3. 1MPOrt OF SID FIlES ..uuiiiiiie e e e e e e et e et e e et 59

i R @01V =] g To [= o ot N 62

12.5. Writing t0 User DEfiNEA FIlESiiiiiicii e 63

12.6. Exporting Labels to other SOUrCEfIIEScovuiiii e 63

12.7. EXporting LabelS 10 VICEcouniiiii et e e e e e e e e e e e e eeen 64

G 1Y L [} 1= £ PR 65
TS IO Y/ oo 1 A B T = ox /=N 65

14, SPECIAl FEALUINESuuiiiii ettt e e e e e e e e e e et e e ettt e e et e e et e e et e et e e et e e et e eanaeeees 66
14.1. Name and path of the SOUFCEFIIEoiien e 66

14.2. BasiC UPStart PrOgram ...ccuue e e e e e e e e e e e e et e e et e et e et e e aaneeeens 66

T @ o wa o L @01 = | (= PP 66

14.4. COlOUN CONSEANTS ...eeeettieeeeeii e eeeett e e e eett e e e ettt e e e e ett e e e eett e e e eete s aeeeettaeeeettaeeeentaeeeesenaeeeees 67

14.5. Making 3D CalCUIAtIONScvuuiiiiee et e e e e e e e e e e e et e eea e eees 68

15, ASSEMDBIE INFOMMBIION ...iiiiii et e et e e et r e e e et r e e e atneeeseenas 71
15.1. The ASMINTO OPLION ...ttt e e e e e e e e e et e e et e e s e e e et e e et e eannaes 71

15.2. Realtime feedback from the assemblercoooiiiiiiiii 72

15.3. The ASMINFO fil@ FOMELiieie e eaaens 72

15,4, THE SECHIONS ..uueieiti ettt e e e e e et e e e et e e e et e e e e et e e e e et e e e e era s 73
15.4.0, LIDraries SECHIONuiiiiii ettt e et e e e et e e e et e e e era e 73

15.4.2. DITECHVES SECHION ...uiiiiiiiieiieii ettt ettt e et e et e e et e e e et s e e e et e e e e enn s 73

15.4.3. Preprocessor dir€CtVES SECHIONvvuuiiii i e e e e e e e e e e e e et e e e eees 73

15.4.4, FlIES SECHION ...vuieeiiiii ettt e e et e e et s e e e et e e e e et e e e eabaaaeaees 73

N S Y = Q= 1 o S 74

S T g o (S = o 1 o PP 74

G 1= 11 o PP 75

Kick Assembler Manua

16.1. ASSEITING EXPIESSIONS ...evtueiuneeett ettt estt e eat e e et e esta e eat e eat e eetn e et estneeatneeaneeetnressnaaennees 75
16.2. ASSErtiNg €ITOIS IN EXPrESSIONS ...uivtueitneeeii ettt eeat e eateeste e st eeat e et eeateeetnaastnraranaerrnaeeeen 75
T A== e oo Lo [75
16.4. ASSErtiNg €ITOIS IN COUBuiiiniiii e et et e e e e e e e e e e e et e e e e e e e et e e ean e ean s 76
17. 3rd Party JAVa PIUGINSovniiiiiei et e e e e e e e e e e e e e e e e e aaa 77
A T I3 TC T 1= B 0= PP 77
17.2. REQISLENING YOUE PIUGINS . ..uiiiiii i eei e e e e e e e e e e et e et e et e e et e e aan e eens 77
17.3. A qUICK EXAMPIE (MACTOS) ...uuiiiiiiiiiieii et e et e et e e e e e e e e e e e e e e e et e e st eeaaeeannaes 77
17.4. General ComMMUNICALION INLEITACES ...ivvvuiiiiiiii et e e e eaenns 78
17.4.1. The IENGINE INEEITACEivviiiii e e e e e e ean s 79
17.4.2. The IVAUE INEITACE ...vuiiiii e 79
17.4.3. The ISourceRange INtEIfaCecocuiiiii e e 80
17.4.4. The IMemoryBIock INtErfatec.uvviiiiii e 80
17.4.5. The IParameterMap INtErfaceccuuiiiiiiiiii e 80

T I T2 o 1 0 81
30t O V= o T o] S 81
S Voo 1= g = 10To 1 82
17.5.3. SegmentModifier PlUGINSouiiiiiie e 82
17.5.4. DISKWIILEr PlUGINS ...ovuiiiiiicii e e e e e e e e e e e e e e e e e et e e e ean s 82
17.5.5. Archive PIUQINSoouiiii e e e e 83
17.5.6. AutoINcludeFile PIUGINSciiiiiii e e 84

YN O U o Q== L= (= o= PN 85
A.L Command LinNg OPLiONSccuuuiiiiiieiiee e e e e e e e e e e e e e e e e et e e e ran s 85
A.2. PreproCeSSOr DIFBCHIVESivuu it et e e e e e e e e e e e e e et e e et e e et e e e et e e aaneeeens 86
Y 1V 1 < 0 To 0 o= PP 87
A.3.1. Standard 6502 MNEMONICSuueiieiiieetiiie et e et e e et e e et e e e eat e e et e e aerrnaeas 87
A.3.2. lllegal 6502 MNEMONICSuiiiiiiiiei e e e e e e e e e e e e e et e et e e aa e aanns 88
NG 1 I 1 PSS 89
A.3.4. B5C02 MNEMONICScevviiieeiiii ettt e et e e et e e ettt e e e et e e e e et e e e et e e e e at e eeeatn s 89

A4 ASSEMDIEr DITECHIVES .. .iiiiiiieiiiii et e et e e et e e et e e e et e e e enen s 91
Y= 0TI Y/ o= PP 93
2 = ot oo Tl B = T P 94
B.1. The flexible Parse AlQOrithm ..o e e 94
B.2. Recording Of SIde EffECLSuuiiiiiiii i e 94
B.3. Function Mode and ASM IMOOEcoeuuiiiiiiiie et eeea e e eaenns 94
B.4. Invalid Value CalCUIBLIONSuuieiiiiiieeeii e e e et e et e e et e e e e at e e e eaen s 9
C. GOoiNG from VErsion 3.X 10 4.0 ...ouuuiiiiiiiiii e e e e e e e e e e e e aaae 95
C.L. TRE NEW FEAIUIES ... i eieiii et e e e e ettt e e et e e e ettt e e e e et reeeestnneeeestnneeeenes 95
O A B 11 (= 1= 1o =R LTS 01 96
C.3. DIfference in DENaVIONi it 97
C.4. CONVEITING 3. X SOUICES ..ueetueetnetiteeeteestaestt e stnesateeeanaestnaesttaesaneeataestnaestnressneesnnaesnnns 97

Chapter 1
Introduction

Welcome to Kick Assembler, an advanced MOS 65xx assembler combined with a Java Script like script lan-
guage.

The assembler has all the features you would expect of a modern assembler like macros, illegal and DTV op-
codes and commands for unrolling loops. It also has features like pseudo commands, import of SID files, import
of standard graphic formats and support for 3rd party Java plugins. The script language makes it easy to gener-
ate data for your programs. This could be data such as sine waves, coordinates for a vector object, or graphic
converters. Writing small data generating programs directly in you assembler source code is much handier than
writing them in external languages like Java or C++.The script language and the assembler is integrated. Unlike
other solutions, where scripts are prepassed, the script code and the assembler directives works together giving
amore compl ete solution.

As seen by the size of this manual, Kick Assembler has alot of functionality. Y ou don't need to know it all to
use the assembler, and getting to know all the features may take some time. If you are new to Kick Assembler, a
good way to start is to read Chapter 2, Getting Sarted, Chapter 3, Basic Assembler Functionality and Chapter 4,
Introducing the Script Language and then supplement with the features you need. Also notice the quick reference
appendix which contains lists of directives, options and values.

Thisisthefifth version of Kick Assembler. Thefirst version (1.x) wasanormal 6510 cross assembler devel oped
around 2003 and was never made public. The second version (2.x) was developed in 2006 and combined the
assembl er with ascript language, giving you the opportunity to write programsthat generate datafor the assembler
code. Finaly in august 2006 the project went public. The third version (3.x) improved the underlying assembling
mechanism using a flexible pass algorithm, recording of side effects and handling of invalid values. This gave
better performance, and made it possible make more advanced feature. The fourth version (4.x) replaced the
parsing mechanism, which where made using a parser generator, with a handwritten one which is faster, more
flexible and included a preprocessor. This made it possible to do new language constructs and have better error
handling. It also replaced the scoping system so it includes all entities, not just symbols. The fifth version (5.x)
added segments which give the opportunity to manage the output of directives and channel it to files, disk images
and other segments.

Through the years the project have grown quite big, with a professional setup including aits own code reposi-
tory, alarge automated test suite and automatic building and deploying.

A lot of people have contributed with valuable comments and suggestions by mail and on CSDB. Thanks guys.
Y our feedback is greatly appreciated. Also thanks to Gerwin Klein for doing JFlex (the lexical analyser used for
this assembler); Scott Hudson, Frank Flannery and C. Scott Ananian for doing CUP (The parser generator). And
finaly, Thanks to XMLMind for sponsoring the project with a pro version of their XML editor in which this
manual is written.

| would like to hear from people that use Kick Assembler so do not hesitate to write your comments to
kickassembl er@no.spam.theweb.dk (<- Remove no.spam. for real address).

| wish you happy coding..

Chapter 2
Getting Started

This chapter is written to quickly get you started using Kick Assembler. The details of the assembler's func-
tionalities will be presented later.

2.1. Running the Assembler

Kick Assembler run on any platform with Java8.0 or higher installed. Java can be downloaded for free on
Javaswebsite (http://java.com/en/downl oad/index.jsp). To assembl e thefile myCode.asm simply go to acommand
prompt and write:

java —j ar ki ckass.jar myCode. asm

And that's it.

Having problems with Java? Some Windows users found that Java couldn't be reached from the command
prompt after installation. If thisis the case you have to insert it in your path environment variable. You can test
it by writing:

‘java —versi on

Javawill now display the Java version if it's correctly installed.

2.2. An Example Interrupt

Below isalittle sample program to quickly get you started using Kick Assembler. It sets up an interrupt, which
play some music. It shows you how to use non-standard features such as comments, how to use macros, how to
include external files and how to use the BasicUpstart2-macro which inserts abasic sys-lineto start your program.

This should be enough to get you (kick) started.

Basi cUpstart 2(start)

* = $4000 “Main Progrant
start: |da #300

sta $d020

sta $d021

| da #$00

jsr $1000 /] init music

| da #<irqgl
sta $0314
| da #>irql
sta $0315
| da #$7f
sta $dcod
sta $ddod
| da #$81
sta $d0la
| da #$1b
sta $d011
| da #$80
sta $d012
| da $dcod
| da $ddod

http://java.com/en/download/index.jsp

Getting Started

asl $d019
cli
jm *

irqgl: asl $d019
Set Bor der Col or (2)
jsr $1003 /1 play nusic
Set Bor der Col or (0)

jmp $ea8l
e e L

*=$1000 “Muisic”

.import binary “ode to 64.bin”
e e L

/1 Alittle macro

. macr o Set Bor der Col or (col or) {
| da #col or
sta $d020

2.3. Configuring the Assembler

Kick Assembler has a lot of command line options (a summary is given in Appendix A, Quick Reference).
For example, if you assemble your program with the —showmem option you will get a memorymap shown after
assembling:

java —j ar ki ckass.jar —shownrem nyCode. asm

By placing afile called KickAss.cfg in the same folder as the KickAssjar, you can set command line options
that are used at every assembling. Lets say you always wants to have shown a memorymap after assembling and
then have the result executed in the C64 emulator VICE. Then you write the following in the KickAss.cfg file:

- showrem
-execute “c:/c64/wi nvi ce/ x64. exe —confirnmexit”
This is a conment

(Replace c:/c64/winvice/ with a path that points to the vicefolder on your machine)
All lines starting with # are treated as comments.

Chapter 3
Basic Assembler Functionality

This chapter describes the mnemonics and the basic directives that are not related to the script language.

3.1. Mnemonics

In Kick Assembler you can write assembler mnemonics the traditional way:

| da #0
sta $d020
sta $d021

If you want to write several commands on one line then separate them with ; like this:

| da #0; sta $d020; sta $d021

Kick Assembler supports different sets of opcodes. The default set includes the standard 6502 mnemonics plus
theillegal opcodes. To switch between instruction sets of different cpu's use the .cpu directive: The following will
switch to the 65c02 instruction set:

.cpu _65c02

| oop: inc $20
bra | oop /1 bra is not present in standard 6502 mmenonics

Available cpus are:

Table3.1. CPU's

Name Description

_6502Nolllegas The standard 6502 instruction set.

_6502 The standard 6502 instruction + the illegal opcodes.
Thisis the default setting for KickAssembler.

dtv Thestandard 6502 instruction set + the DTV commands.

_65c02 The 65c02 instruction set.

A complete listing of the CPU instructions and their opcodes can be found in the Quick Reference Appendix.

3.2. Argument Types

Kick Assembler uses the traditional notation for addressing modes/ argument types:

Table 3.2. Argument Types

Mode Example

No argument nop
Immediate Ida #$30
Zeropage Ida$30

Zeropage,x Ida $30,x

Basic Assembler Functionality

Mode Example

Zeropagey ldx $30,y
Indirect zeropage,x Ida ($30,x)
Indirect zeropage,y Ida ($30),y
Abolute Ida $1000
Absolute,x Ida $1000,x
Absolutey |da $1000,y
Indirect jmp ($1000)
Relative to program counter bneloop
Indirect zeropage (65c02 only) adc ($12)
Zeropage, Relative (65c02 only) bbrl $12,label
indirect,x (65c02 only) jmp ($1234,x)

An argument is converted to its zeropage mode if possible. This means that Ida $0030 will generate an Ida
command in its zeropage mode!

Y ou can force the assembler to use the absolute form of the mnemonic by appending .a or .abs. The same way
you can tell the assembler to use zeropage mode when it would otherwise use an absolute mode.

absol ute node
as abs (abbrevi ation)
zer opage node
as zp (abbreviation)

Uses
Same
Uses
Same

| da. abs $0040, x /1
I da. a $0030, x /1
stx.zp zplLabel,y [/
stx.z zpLabel ,y /1
.l abel zpLabel = $10

jnp.z $1000 // Modifies nothing, jnp don't have any zp node

With the following extensions you can force specific modes. The are deprecated and only kept for backward
compatibility:

Table 3.3. Deprecated Mnemonic Extensions

Ext Mode Example
im, imm Immediate

Z,zZp Zeropage ldx.z $1234
ZX, ZpX Zeropage,x Ida.zpx table
zy, Zpy Zeropagey

izx, izpx Indirect zeropage,x

izy, izpy Indirect zeropage,y

ax, absx Absolute,x Ida.absx $1234
ay, absy Absolutey

l,ind Indirect jmp.i $1000
r,rel Relative to program counter

3.3. Number formats

Kick Assembler supports the standard number formats:

4§ the argument is unknown (eg. an unresolved label) in the first pass, the assembler will assumeit'sa 16 bit value

Basic Assembler Functionality

Table 3.4. Number formats

Prefix Format Example
Decimal Ida#42

$ Hexadecimal |da#$2a, |da #$ff

% Binary Ida#%101010

3.4. Labels, Arguments Labels and Multi Labels

Label declarations in Kick Assembler end with ;" and have no postfix when referred to, as shown in the
following program:

| oop: inc $d020
inc $do21

jmp Ioop

Y ou can put labelsin front of mnemonic arguments. This can be useful when creating self modifying code:

stx tnpX

I dx tnmpX: #$00

Kick Assembler also supports multi labels, which are labels that can be declared more than once. These are
useful to prevent name conflicts between [abels. A multi label startswitha‘!” and when your referenceit you have
to end with a‘+' to refer to the next multi label or ‘*-* to refer to the previous multi label:

| dx #100
'l oop: inc $d020
dex
bne !l oop- // Junps to the previous instance of !l oop

| dx #100
'l oop: inc $d021
dex
bne !l oop- // Junps to the previous instance of !l oop

or

| dx #10

'l oop:
jmp '+ // Junps over the two next nops to the ! | abel
nop
nop

1. jmp '+ // Junps over the two next nops to the ! | abel
nop
nop

dex
bne !l oop- // Junps to the previous !loop |abel

Applying more than one '+ or -' will skip labels. E.g. '+++' will jump to the third label:

jmp '+++ // Junps to the third '!"' [abel
1 nop
nop
1 /1 <- here!

Another way to avoid conflicting variables is to use user defined scopes, which are explained in the scoping
section of Chapter 4, Introducing the Script Language.

Basic Assembler Functionality

A ‘*’ returns the value of the current memory location so instead of using labels you can write your jumps
likethis:

/1 Junps with '*'

jm *

i nc $d020

inc $d021

jm *-6
/1 The sane junps with | abels
t hi s: jmp this

'l oop: inc $d020
inc $d021
jmp !l oop-

When referencing alabel that is not yet resolved, the assembler will assume atwo byte address, even though it
later isfound to be in the zeropage. Y ou can mark labels as being in the zeropage with the .zp directive:

/1 Uses zeropage formof |da and sta eventhough the |labels is first
/] resolved |ater

| da zpRegl

sta zpReg2

*=$10 virtua
-zp {

zpRegl: .byte O
zpReg2: .byte O
}

Note: Currently the .zp directive doesn't handle macros and pseudocommands called within the {}. Labels
inside these will be in the form defined in the macro.

3.5. Memory Directives

The* directiveis used to set the program counter. A program should always start with a* directive to tell the
assembl er where to put the output. Here are some examples of use:

*=$1000 " Progrant

| dx #10

Il oop: dex
bne !l oop-
rts

*=$4000 " Dat a"
.byte 1,0,2,0,3,0,4,0

*=$5000 "More data"
.text "Hello"

Note: The old notation ('.pc=$1000") from Kick Assembler 2.x and 3.x is still supported.

The last argument is optional and is used to name the memory block created by the directive. When using the
‘-showmem’ option when running the assembler amemory map will be generated that displays the memory usage
and block names. The map of the above program looks like this:

$1000- $1005 Pr ogr am
$4000- $4007 Dat a
$5000- $5004 More data

Basic Assembler Functionality

By using the virtual option on the .pc directive you can declare amemory block that is not saved in the resulting
file.

*=$0400 "Data Tables 1" virtual
tablel: .fill $100,0
table2: .fill $100,0

*=$0400 "Data Tables 2" virtual
table3: .fill $150,0
table4: .fill $100,0

*=$1000 " Progrant
| dx #0
| da tabl el, x

Note that virtual memory blocks can overlap other memory blocks. They are marked with an asterisk in the
memory map.

*$0400- $05ff Data Tables 1
*$0400- $064f Data Tables 2
$1000- $1005 Progr am

Since virtual memory blocks aren't saved, the above example will only save the memory from $1000 to $1005.

With the .align directive, you can align the program counter to a given interval. Thisis useful for optimizing
your code as crossing a memory page boundary yields a penalty of one cycle for memory referring commands.
To avoid this, use the .align command to align your tables:

*=$1000 " Progr ant
| dx #1

| da dat a, x

rts

*=$10f f //Bad place for the data
.align $100 /1 Al'ignment to the nearest page boundary saves a cycle
dat a: .byte 1,2,3,4,5,6,7,8

In case you want your code placed at position $1000 in the memory but want it assembled like it was placed
at $2000, you can use the .pseudopc directive:

*=$1000 "Programto be rel ocated at $2000"
. pseudopc $2000 {
| oop: inc $d020

jmp loop // WII produce jnp $2000 instead of jnp $1000
}

3.6. Data Directives

The .byte, .word, .dword and .text directives are used to generate byte, word (one word= two bytes), dword
(double word = 4 bytes) and text data as in standard 65xx assemblers.

.byte 1,2,3,4 /1 Cenerates the bytes 1,2,3,4

.word $2000, $1234 // Cenerates the bytes $00, $20, $34, $12
.dword $12341234 // Cenerates the bytes $34, $12, $34, $12
.text "Hello Worl d"

Y ou can use .by, .wo and .dw as aliases for .byte, .word and .dword, so '.by $10' is the same as '.byte $10'.

With the fill directive you can fill a section of the memory with bytes. It works like aloop and automatically
setsthe variablei to the iteration number.

Basic Assembler Functionality

/1 Nomal filling

.fill 5, 0// GCenerates byte 0,0,0,0,0

fill 5, i // Generates byte 0,1,2,3,4

fill 256, 127.5 + 127.5*sin(toRadi ans(i*360/256)) // Generates a sine curve

/1l Use [,,] to fill with a repeat pattern

fill 4, [$10, $20] Il Cenerates .byte $10, $20, $10, $20, $10, $20, $10, $20
il 3, ['D,"E,"M,"O,"'!'"] /] Generates the sane bytes as .text " DEMJ DEMO
il 3, [i,i*$10] /| Generates .byte 0,0, 1, $10, 2, $20

[/ .fillword is like .fill but with .word directives

fillword 5,i*$80 /! Cenerates .word $0000, $0080, $0100, $0180, $0200

.fillword 2,[$100, 0] [/l Cenerates .word $0100, $0000, $0100, $0000

In most cases it is more desirable to have two lists, one with low byte and one with high byte, than aword list.
To generate thisyou can use the .lohifill directive. It generates the two list right after each each other and lets your
access them using a hi/lo field on a connected label like this:

Idx #20 // ychar coord

Idy #15 // xchar coord

clc

Ida mul 40.10,x // Access |lo byte table
sta $fe

I da mul 40. hi,x // Access hi byte table
ora #$04

sta $ff

| da #' x'

sta ($fe),y [/ Draws 'x' at screenpos X,y
rts

mul 40: .lohifill $100, 40*i /| Generates |o/hi table:
/] .byte <0, <40, <80, <120,
/] .byte >0, >40, >80, >120,

Generating bytes using the fill directive will compile faster than generating byte using the .for and .byte direc-
tives. (The .for directive will be explained later.)

3.7. Encoding

The .text directive outputs bytes to the memory that represents the given textstring. The default encoding is
'screencode_mixed', which maps to the screencode representations of the charset with both uppercase and lower-
case |etters. To change the encoding, use the .encoding directive:

/1 How to use encodi ng

.encodi ng "screencode_upper"

.text "TH'S 1S WRITTEN I N THE UPPERCASE SI NCE LONERCASE CHARS ARE USE FOR GFX
Sl G\S'

.encodi ng "screencode_ni xed"
.text "In this ENCODI NG we have both UPPER and | ower case chars.”
.text "Remenber to swith to a charset that fits the encoding."

The encoding affects every operation that converts charactersin the sourcecode to byte values, for instance the
".import text' directive is also affected.

Basic Assembler Functionality

The supported encodings are:

Table 3.5. Encodings

Name Description

petscii_mixed The petscii representation of the charset with both upper
and lower case characters.

petscii_upper The petscii representation of the charset with upper case
and graphics characters.

screencode_mixed The screencode representation of petscii_mixed

screencode_upper The screencode representation of petscii_upper

3.8. Importing source code

Use the preprocessor to import other source files.

/1 lmport the file "nylibrary. asnf
#i nport "MLibrary. asnf

/1 Only inport "UpstartCode.asn' if STAND ALONE is defined
#i nportif STAND _ALONE " Upst art Code. asnt

Note that preprocessor commands starts with #. Refer to the chapter on the preprocessor for a detailed descrip-
tion.

When Kick Assembler searchesfor afile, it first ook in the current directory. Afterwardsit looksin the direc-
toriessupplied by the*-libdir’ parameter when running the assembler. This enablesyou to create standard libraries
for filesyou use in several different sources. A command line could look like this:

java —j ar kickass.jar myProgramasm —libdir ..\music —libdir c:\code\stdlib

If you build source code libraries you might want to ensure that the library is only included once in your code.
This can be done by placing a#importonce directive in the top of the library file:

Filel. asm
#i npor t once
.print "This will only be printed once!"

Fil e2. asm
#inmport "Filel.asni // This will inport Filel
#inmport "Filel.asnml // This will not inport anything

NOTE! The v3.x directives for importing source files using the import directive (.import source "myfile.asm"
and .importonce), not the preprocessor, is still supported. But its recommended to use the preprocessor directives,
sincethey will give amore natural order of evaluation. Using the preprocessor will import the source at once while
using the old import directive will first parse the entire file, and then import external files during evaluation.

3.9. Importing data

With the .import directive you can import data from external filesinto your code. Y ou can import binary, C64,
and text files:

/1 inport the bytes fromthe file 'nusic.bin'
.import binary "Misic.bin"

/1 lmport the bytes fromthe c64 file 'charset.c64'
/1 (Same as binary but skips the first two address bytes)
.import c64 "charset.c64"

10

Basic Assembler Functionality

/! Inport the chars fromthe text file
/1l (Converts the bytes as a .text directive would do)
.import text "scroll.txt"

The binary, c64 and text import takes an offset and alength as optional parameters:

/1 inmport the bytes fromthe file '"nmusic.bin', but skip the first 100 bytes
.inmport binary "Misic.bin", 100

[/ Inmports $200 bytes starting from position $402 (the two extra bytes is because
its a c64 file)
.inmport c64 "charset.c64", $400, $200

Aswhen importing sourcesfiles, theimport directive al so searches the folders given by theibdir option when
looking for afile.

3.10. Comments

Comments are pieces of the program that areignored by the assembler. Kick Assembler supportsline and block
comments known from languages such as C++ and Java. When the assembler sees ‘//’ it ignores the rest of that
line. C block comments ignores everything between /* and */.

| da #10

sta $d020 // This is also a comment

sta /* Comments can be placed anywhere */ $d021
rts

Traditional 65xx assembler line comments (;) are not supported since the semicolon is used in for-loopsin the
script language.

3.11. Console Output

With the .print directive you can output text to the user while assembling. For example:

.print "Hello world"
.var x=2
.print "x="+x

Thiswill give the following output from the assembler:

par si ng

flex pass 1

CQut put pass
Hell o worl d
x=2.0

Noticethat the output is given during the output pass. Y ou can also print the output immediately with the .print-
now command. Thisisuseful for debugging script where errors prevent the execution of the output pass. The.print-
now command will print the output in each pass, and in some passes the output might be incomplete due to lack
of information. In the following example we print alabel that isn't resolved in the first pass:

.printnow "l oop=$" + toHexString(l oop)

*=$1000
| oop: jnp | oop

Thiswill give the following output:

11

Basic Assembler Functionality

par si ng
flex pass 1
| oop=$<<Invalid String>>
flex pass 2
| 0op=$1000
Cut put pass

If you detect an error while assembling, you can usethe .error directive to terminate the assembling and display
an error message:

.var width = 45
.if (width>40) .error "width can’t be hi gher than 40"

Another way of writing thisis to use the .errorif directive that takes a boolean expression and a message text.
An error israised if the boolean expression is evaluated to true:

.var width = 45
.errorif with>40, "width can’t be hi gher than 40"

This is more flexible since it standard .if's has to be decided in the first pass which will give an (unwanted)
error if you for example compare not yet resolved labels. If you for instance want to check for a page boundary
crossing you can do like this:

beq | abel 1
.errorif (>*) != (>l abell), "Page crossed!"
nop
nop
| abel 1:

3.12. Breakpoints and watches

Breakpoints and watches changes nothing in the code. They add debug information to emulators/debuggers.
Currently this means adding info to the vice symbol file or the DebugDump file (C64Debugger).

Y ou can set breakpointsin your code with the .break directive:

/Il Exanple 1
I dy #10
| oop:
. br eak /] This will put a breakpoint on 'inc $d020
inc $d020
dey
.break "if y<5" // This will add a string as argument for the breakpoint
bne | oop

/| Exanple 2
| da #10
. break [/ WIIl place a breakpoint at the first nop in the nacro

MyMacr o()

.macro MyMacro() {
nop
nop
nop

The .break directive puts a breakpoint on the current memory position. As seen in the second breakpoint, you
can add an argument to a breakpoint. The syntax of thisis dependant on the consumer. The above case (.break "if
y<5") iswritten for VICE's conditional expressions. VICE will then break if they register isbelow 5.

12

Basic Assembler Functionality

Watches are defined like this

.watch $d018 /1 \atches $d018

.wat ch xpos+1 /1l \Watches the address xpos+1

.wat ch $d000, $d00f /| Watches the range $d000- $d00f

.wat ch xpos, xpos+10, "store" /1l Watches a range with the additional paraneter
"store"

.wat ch count,, "hex8" /1 you can | eave the second argunent enpty

First argument is the address. If second argument is given its the range between the two. Third argument is
an optional text string with additional information. Consult your emul ater/debugger manual for possible content
of third argument.

13

Chapter 4
Introducing the Script Language

In this chapter the basics of the script language isintroduced. We will focus on how Kick Assembler evaluates
expressions, the standard values and libraries. Later chapters will deal with more advanced areas.

4.1. Expressions

Kick assembler has a built in mechanism for evaluating expressions. An example of an expression is 25+2* 3/
X. Expressions can be used in many different contexts, for example to calculate the value of avariable or to define
abyte:

| da #25+2*3/ x
. byte 25+2*3/ x

Standard assemblers can only calculate expressions based on numbers, while Kick Assembler can evaluate
expressions based on many different types like: Numbers, Booleans, Strings, Lists, Vectors, and Matrixes. So, if
you want to calculate an argument based on the second value in alist you write:

| da #35+nmyList.get(1) // 1 because first elenment is nunber O

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

| da #35+myVect or. get X()

Or perhaps on the basis of the x-coordinate on the third vector in alist:

| da #35+myVect or Li st. get (2) . get X()

| think you get the idea by now. Kick Assembler's evaluation mechanism is much like those in modern pro-
gramming languages. It has a kind of object oriented approach, so calling a function on a value(/object) executes
afunction specially connected to the value. Operators like +, -,*, /, ==, I=, etc., are seen as functions and are also
specially defined for each type of value.

In the following chapters, adetailed description of how to use the value types and functionsin Kick Assembler
will be presented.

4.2. Variables, Constants and User Defined Labels

With variables you can store data for later use. Before you can use a variable you have to declare it. You do
thiswith the .var directive:

.var x=25
| da #x // Gves |da #25

If you want to change x later on you write:

.eval x=x+10
| da #x // Gves |da #35

Thiswill increase x by 10. The .eval directive is used to make Kick Assembler evaluate expressions. In fact,
the .var directive above is just a convenient shorthand of ‘.eval var x =25, where ‘var’ is subexpression that
declares avariable (thiswill come in handy later when we want to define variablesin for-loops).

Other shorthands exist. The operators ++, --, +=, -=, *= and /= will automatically call a referenced variable
with +1,-1, +y, -y, *y and /y. For example:

14

Introducing the Script Language

.var x = 0

.eval x++ /] Gves x=x+1
.eval x-- /] Gves x=x-1
.eval x+=3 /] Gves x=x+3
.eval x-=7 /] Gves x=x-7
.eval x*=3 /] Gves x=x*3
.eval x/=2 /] Gves x=x/2

Experienced users of modern programming languages will know that assignments return avalue, e.g. X =y =
z = 25 first assigns 25 to z, which returns 25 that is assigned to y, which returns 25 that is assigned to x. Kick
Assembler supports this aswell. Notice that the ++ and -- works as real ++ and — postfix operators, which means
that they return the original value and not the new (Ex: .eval x=0 .eval y=x++, will set x to 1 and y to 0)

Y ou can a'so declare constants:

.const c=1 /| Declares the constant ¢ to be 1
.const name = "Canelot" // Constants can assune any val ue, for exanple string

A constant can't be assigned a new value, so .eval pi=22 will generate an error. Note that not all values are
immutable. If you define a constant that pointsto alist, the content of thelist can still change. If you want to make
amutable value immutable, you can use its lock() function, which will lock it's content:

.const i mmutabl eLi st = List().add(1, 2, 3).1ock()

After thisyou will get an error if you try to add an element or modify existing elements.
With the .enum statement you can define enumerations, which are series of constants:

.enum {si ngl eCol or, multi Col or} /1 Defines singleColor=0, nultiCol or=1

.enum {effect1=1, effect 2=2, end=$ff} // Assigns values explicitly

.enum {up, down, [eft, right, none=$ff} // You can mix inplicit and explicit
/1 assignment of val ues

Variables and constants can only be seen after they are declared while labels can be seen in the entire scope.
Y ou can define alabel with the .|abel directive like you define variables and constants:

/1 This fails
inc nmyLabel 1
.const nyLabel 1 = $d020

/1 This is ok
inc myLabel 2
.l abel nyLabel 2 = $d020

4.3. Scoping

You can limit the scope of your variables and labels by defining a user defined scope. Thisis done by {..}.
Everything between the bracketsis defined in alocal scope and can't be seen from the outside.

Functionl: {
.var length = 10
| dx #0
| da #0
| oop: sta tablel, x
i nx
cpx #l ength
bne | oop

}

Function2: {
.var length = 20 // doesn’t collide with the previous ‘Ilength

15

Introducing the Script Language

| dx #0
| da #0
| oop: sta tabl e2, x /1 the | abel doesn’t collide with the previous ‘I oop
i nx
cpx #l ength
bne | oop

Scopes can be nested as many times as you wish as demonstrated by the following program:

.var x = 10

{
.var x=20
{
.print "X in 2nd | evel scope read from3rd | evel scope is " + X
.var x=30
.print "X in 3rd level scope is " + X
}
.print "X in 2nd | evel scope is " + X
}

.print "X in first level scope is " + X

The output of thisis:

Xin 2nd | evel scope read from3rd | evel scope is 20.0
X in 3rd | evel scope is 30.0

X in 2nd | evel scope is 20.0

Xin first level scope is 10.0

4.4. Numeric Values

Numeric values are numbers, covering both integers and floats. Standard numerical operators(+,-,*, and/) work
as in standard programming languages. Y ou can combine them with each other and they will obey the standard
precedence rules. Here are some examples:

25+3
5+2. 5*3-10/ 2
charmem + y * $100

In practical use they can look likethis:

.var charnmem = $0400
| dx #0
| da #0

| oop: sta charnmem + 0*$100, x
sta charnmem + 1*$100, x
sta charnmem + 2*$100, x
sta charnmem + 3*$100, x
i nx
bne | oop

Y ou can a'so use bitwise operators to perform and, or, exclusive or, and bit shifting operations.

.var x=$12345678
.word x & $00ff, [x>>16] & $00ff // gives .word $0078, $0034

Specia for 65xx assemblers are the high and low-byte operators (>,<) that are typically used like this:

lda #<interruptl // Takes the |owbyte of the interuptl val ue
sta $0314

lda #>interruptl // Takes the high byte of the interuptl val ue
sta $0315

16

Introducing the Script Language

Table4.1. Numeric Values

Name Operator Examples Description

Unary minus - Inverts the sign of a num-
ber.

Plus + 10+2=12 Adds two numbers.

Minus - 10-8=2 Subtracts two numbers.

Multiply * 2*3=6 Multiply two numbers.

Divide / 10/2=5 Divides two numbers.

High byte > >$1020 = $10 Returns the second byte of
anumber.

Low byte < <$1020 = $20 Returns the first byte of a
number.

Bitshift left << 2<<2=8 Shifts the bits by a giv-
en number of spaces to the
left.

Bitshift right >> 2>>1=1 Shifts the bits by a giv-
en number of spaces to the
right.

Bitwise and & $3f & $Of = $f Performs bitwise and be-
tween two numbers.

Bitwise or [$0f | $30 = $3f Performs a bitwise or be-
tween two numbers.

Bitwise eor N $ff A $f0 = $0f Performs a hitwise exclu-
sive or between two num-
bers.

Bitwise not ~ ~%11 = %...11111100 Performs bitwise negation
of the bits.

Y ou can get the number representation of an arbitrary value by using the general .number() function. Eg.

.print ‘x’.nunber()

4.5. Parentheses

Y ou can use both soft parentheses () and har parentheses [] to tell the order of evaluation.

| da #2+5*2 /1 gives |lda #12
| da #(2+5)*2 // gives |da #14
| da #[2+5]*2 // gives |da #14

Note that 65xx assemblers use soft parenthesis to signal an indirect addressing mode:

[/l Creates a jnp indirect comand

($1000)
[/'l Creates a jnp absol ute command

jmp
j mp [$1000]

Y ou can nest as many parentheses as you want, so (([((2+4))])*3)+25.5isalegal expression.

4.6. String Values

Strings are used to contain text. Y ou can define aplain strings or escape code strings like this:

17

Introducing the Script Language

/1 Plain strings
.var nmessage = "Hello Worl d"
.text nmessage /l Gves .text "Hello world"

.const file="c:\newstuff"

/l String with escape codes ('\esc') start with @

.print @First |line.\nSecond |ine." /1 Using new ine
.print @He said: \"Hello World\"" /1 Using " inside the string
.text @This text will |oop now$ff" // placing hex values ($ff) in the

t ext

@ in front of a string means you can use escape characters. Notice how "\n' in "c:\newstuff" is not a newline
while \n' in @"First line\nSecond line." is. (Note: This is the opposite of C# and is this way to avoid breaking
file referencesin old sources).

The supported escape codes are:

Table 4.2. Escape codes

Code Example Description
\b @"\b" Backspace
\f @"\f" Form feed
\n @"Linel\nLine2" Newline
\r @"\r" Carriage return
\t print @"Hello\tWorld" Tab
\\ @"c:\\tmp\\myfile.txt” Backslash
\" @"It's cdled \"Bodiam Castle\"" Double quotes
\$ @"Hello worl d\$ff" Two digit hex values

Every object has a string representation and you can concatenate strings with the + operator. For example:

.var x=25
.var nyString= “Xis “ + X /I Gves nyString = "X is 25"

Y ou can usethe .print directiveto print astring to the consol e while assembling. Thisis useful when debugging.
Printing x and y can be done like this:

.print "x="+x
.print "y="+y

You can also print labels to see which location they refer to. If you do this, it's best to convert the label value
to hexadecimal notation first:

.print “int1=$"+toHexString(int1l)

intl: sta regA+l
Stx regX+l
sty regY+1
| sr $d019
/'l Etc.

Hereisalist of functions/operators defined on strings:

18

Introducing the Script Language

Table4.3. String Values

Function/Operator Description

+ Appends two strings.

asBoolean() Converts the string to a boolean vaue (eg,
“true”’ .asBoolean()).

asNumber() Convertsthe string to anumber value. Ex, “ 35" .asNum-
ber().

asNumber(radix) Converts the string to a number value with the

given radix (16=hexadecimal, 2=binary etc.). EX,
“f” asNumber(16) will return 15.

charAt(n) Returns the character at position n.

size() Returns the number of charactersin the string.

substring(il,i2) Returns the substring beginning at i1 and ending at i2
(char at i2 not included).

toL owerCase() Return the lower version of the string.

toUpperCase() Return the uppercase version of the string.

Here are the functions that take a number value and convert it to a string:

Table 4.4. Numbersto Strings

Function Description

tolntString(x) Return x as an integer string (eg x=16.0 will return
“16").

tolntString(x,minSize) Return x as an integer string space-padded to reach the
given minsize. (eg tolntString(16,5) will return* 16").

toBinaryString(x) Return x as a binary string (eg x=16.0 will return
“10000").

toBinaryString(x,minSize) Return x as a binary string zero-padded to reach the
given minSize (eg toBinaryString(16,8) will return
“00010000").

toOctal String(x) Return x as an octal string (eg x=16.0 will return “20").

toOctal String(x,minSize) Return x as an octal string zero-padded to reach the
given minSize (eg toBinaryString(16,4) will return
13 0020”).

toHexString(x) Return x as a hexadecimal string (eg x=16.0 will return
“10").

toHexString(x,minSize) Return x as an hexadecimal string zero-padded to reach
the given minSize (eg toBinaryString(16,4) will return
“0010").

Y ou can get the string representation of an arbitrary value by using the general .string() function. Eg.

.print 1234.string().charAt(2) /1l Prints 3

4.7. Char Values

Char values, or characters, are used like this:

19

Introducing the Script Language

|da #' H
sta $0400
lda #'i'
sta $0401

| da #"?!#".char At (1)
sta $0402

.byte "H,'e,"I","I',"0","
.text "World'+' !

In the above example, chars are used in two ways. In the first examples their numeric representation are used
as arguments to the Ida commands and in the final example, '!'s string representation is appended to the "World"
string.

Char values is a subclass of number values, which means that it has all the functions that are placed on the
number values, so you can do stuff like.

lda # H+1 // Sane as lda #' |’

sta $0400
lda # A +1 // Sane as lda # B
sta $0401
lda # L +1 // Sane as lda # M
sta $0402

4.8. The Math Library

Kick Assembler's math library is built upon the Java math library. This means that nearly every constant and
command in Java'smath library isavailablein Kick Assembler. Hereisalist of available constants and commands.
For further explanation consult the Java documentation at Suns homepage. The only non Javamath library function
ismod (modul o).

Table4.5. Math Constants

Constant Value

PI 3.141592653589793
E 2.718281828459045

Table4.6. Math Functions

Function Description

abs(x) Returns the absol ute (positive) value of x.

acos(X) Returns the arc cosine of x.

asin(x) Returnsthe arc sine of x.

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the
positive x-axis. Useful when converting to polar coor-
dinates.

cbrt(x) Returns the cube root of x.

ceil(x) Rounds up to the nearest integer.

cos(r) Returnsthe cosine of r.

cosh(x) Returns the hyperbolic cosine of r.

exp(x) Returns ex.

expml(x) Returns ex-1.

Introducing the Script Language

Function Description

floor(x) Rounds down to the nearest integer.

hypot(a,b) Returns sqrt(x2+y?2).

| EEEremainder(x,y) Returns the remainder of the two numbers as described
in the |IEEE 754 standard.

log(x) Returns the natural logarithm of x.

10g10(x) Returns the base 10 logarithm of x.

loglp(x) Returnslog(x+1).

max(X,y) Returns the highest number of x and y.

min(x,y) Returns the smallest number of x and y.

mod(a,b) Converts a and b to integers and returns the remainder
of alb.

pow(X,y) Returns x raised to the power of y.

random() Returns arandom number x where 0 ¢ x < 1.

round(x) Rounds x to the nearest integer.

signum(x) Returns 1 if x>0, -1 if x<0 and 0 if x=0.

sin(r) Returnsthe sineof r.

sinh(x) Returns the hyperbolic sine of x.

Sgri(x) Returns the square root of x.

tan(r) Returns the tangent of r.

tanh(x) Returns the hyperbolic tangent of x.

toDegrees(r) Converts aradian angle to degrees.

toRadians(d) Converts a degree angle to radians.

Here are some examples of use.

// Load a with a random nunber
| da #random() *256

// Generate a sine curve
Cfill

256, round(127. 5+127. 5*si n(t oRadi ans(i *360/ 256)))

21

Chapter 5
Branching and Looping

Kick Assembler has control directives that let you put conditions on when a directive is executed and how
many timeit is executed. These are explained in this chapter.

5.1. Boolean Values

The conditions for control directives are given by Boolean values, which are values that can be true or false.
They are generated and used as in programming languages like Java and C#. The following are examples of
boolean variables:

.var nyBool eanl = true /1 Set the variable to true

.var mnyBool ean2 = fal se /1 Set the variable to false

.var fourH gherThanFive = 4>5 // Sets fourHi gher ThanFi ve = fal se
.var aEqual sB = a==b /'l Sets true if ais the same as b

.var xNot10 = x!=10 /1l Sets true if x doesn’t equal 10

Here is the standard set of operators for generating Booleans:

Table 5.1. Boolean generating Functions

Name Operator Example Description

Equal == a==b Returns true if a equals b,
otherwise false.

Not Equal I= al=b Returns true if a doesn't
equal b, otherwise false.

Greater > a>b Returns true if ais greater
than b, otherwise false.

Less < a<b Returnstrueif aislessthan
b, otherwise false.

Greater than >= a>=b Returns true if ais greater
than or equa to b, other-
wisefalse.

Lessthan <= a<=b Returns true if ais less or

equal to b, otherwise false.

All the operators are defined for numeric values, other values have defined a subset of the above. E.g. you can't
say that one boolean is greater than another, but you can seeif they have the same values:

true==true // Sets bl to true
true! =(10<20) // Sets b2 to fal se

.var bl
.var b2

Boolean values have a set of operators assigned. These are the following:

Table5.2. Boolean Operators

Name Operator Example Description

Not ! la Returns true if a is fase,
otherwise false.

And && a& &b Returns true if aand b are
true, otherwise false.

22

Branching and Looping

Operator Description

Or Il Alb Returns true if a or b are
true, otherwise false.

And are used like this:

.var allTrue = 10H gher Than100 && aEqual sB // Is true if the two bool ean
/] argunments are true

Like in languages like C++ or Java, the && and || operators are short circuited. This means that if the first
argument of an && operator is false, then the second argument won't be evaluated since the result can only be
false. The same happensiif the first argument of an || operator is true.

5.2. The .if directive

If-directives work like in standard programming languages. With an .if directive you have the proceeding di-
rective executed only if a given boolean expression is evaluated to true. Here are some examples:

/Il Set x to 10 if x is higher that 10
.if (x>10) .eval x=10

/Il Only show rastertine if the ‘showRasterTi me’ boolean is true
.var showRasterTi me = fal se

.if (showRasterTi ne) inc $d020

jsr PlayMisic

.if (showRasterTi ne) dec $d020

Y ou can group several statementstogether inablock with{...} and have them executed together if the boolean
expression istrue:

/1 1f IrgNr is 3 then play the nusic
0 f (irgNr==3) {

i nc $d020

jsr music+3

dec $d020

By adding an el se statement you can have an expression executed if the boolean expression isfalse:

/! Add the x'th entry of a table if x is positive or
// subtract it if x is negative
.if (x>=0) adc zpXtabl e+x el se shc zpXt abl e+abs(x)

/1 Init an offset table or display a warning if the table length is exceeded
.if (i<tableLength) {
| da #0
sta of fset 1+
sta of fset 2+
} else {
.error "Error!! | is too high!"
}

5.3. Question mark if's

Asknown from languageslike Javaand C++ you can use the write compact if expression in thefollowing form:

condition ? trueExpr : fal seExpr

Some examples of use:

23

Branching and Looping

.var x=true ? "hello" : "goodbye" [/l Sets x = "hell 0"
.var y= [20<10] ? 1 : 2 /] Sets y=2

.var max = a>b ? a:b

.var debug=true
i nc debug ? $d020: $d013 // Increases $d020 si nce debug=true

.var bool ean = max(x, m nLim t==nul | ?0: m nLimt) // Takes care of null limt

5.4. The for directive

With the .for directive you can generate loops as in modern programming languages. The .for directive takes
aninit expression list, aboolean expression, and an iteration list separated by a semicolon. The last two arguments
and the body are executed as long as the boolean expression evaluatesto true.

/1 Prints the nunbers fromO to 9
.for(var i=0;i<10;i++) .print "Number " +

/1l Make data for a sine wave
.for(var i=0;i<256;i++) .byte round(127.5+127.5*si n(toRadi ans(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions separated by
comma:

[/ Print the nunbers fromO to 9

.var i=0

for (;i<10;) {
. print
.eval i++

}

/1 Sum the nunmbers fromO to 9 and print the sumat each step
.for(var i=0, var sun¥0;i <10; sunFsumti, i ++)
.print “The sumat step “ + 1 “ is “ + sum

With the for loop you can quickly generate tables and unroll loops. Y ou can, for example, do aclassic ‘blitter
fill’ routine like this:

.var blitterBuffer=%$3000
.var charset =$3800
.for (x=0; x<16; x++) {
.for(var y=0;y<128; y++) {
if (var y=0) |Ida blitterBuffer+x*128+y
el se eor blitterBuffer+x*128+y
sta charset +x*128+y

5.5. The .while directive

The .whiledirective executes aslong asagiven expressionsistrue. That is, it workslike a.for-loop but without
theinit and iteration parameters:

/!l Print the nunbers fromO to 9

.var i=0

.whil e(i<10) {
.print i;
.eval i++;

}

24

Branching and Looping

5.6. Optimization Considerations when using Loops

Hereisatipif you want to optimize your assembling. Kick assembler has two modes of executing directives.
‘Function Mode' isused whenthedirectiveisplacedinsideafunction or definedirective, otherwise* AsmMode' is
used. ‘ Function Mode' isexecuted fast but isrestricted to script commandsonly (.var, .congt, .for, etc.), while* Asm
Mode' remembers intermediate results so the assembler won't have to make the same calculations in succeeding
passes.

If you make heavy calculations and get slow performance or lack of memory, then place your for loopsinside
a define directive or inside a function. No time or memory will be wasted to record intermediate results, and the
define directive or the directive that called the function, will remember the result in the succeeding passes.

Read more about the define directive in the section ‘*Working with mutable values'.

25

Chapter 6
Data Structures

In the chapter, we will examine user defined data and predefined structures.

6.1. User Defined Structures

It's possible to define your own structures. A structureis a collection of variables like for example a point that
consist of an x and ay coordinate:

/! Define a point structure
.struct Point {x,y}

/|l Create a point with x=1 and y=2 and print it
.var pl = Point(1,2)
.print "pl.x=" + pl.x
.print "pl.y=" + pl.y

/!l Create a point with the default contructor and nodify its argunents
.var p2 = Point()

.eval p2.x =3

.eval p2.y =4

Y ou define a structure with the .struct directive. The above structure has the name ‘Point’ and consists of the
variables x and y. To create an instance of the structure, you use its name as a function. You can either supply
no arguments or give the init values of al the variables. Y ou use the values generated by structures as any other
variables, ex:

| da #0
I dy #pl.y
sta charset +(pl. x>>3) *hei ght , y

Y ou can get access to informations about the struct and access the fields in a more generic way by using the
struct’ s functions:

.struct Person{firstNane, | ast Nane}
.var pl = Person(“Peter”,”Schnei chel ")

.print pl.getStructNane() /1 Prints ‘Person’

.print pl.get NoO Fiel ds() /[l Prints ‘2

.print pl.getFieldNanmes().get(0) // Prints ‘firstNanme’

.eval pl.set(0,"Kasper”) /1 Sets firstNane to Kasper
.print pl.get(“lastNane") /1 Prints “Schrei chel”

/1 Copy val ues fromone struct to anot her

.var p2 = Person()

.for (var i=0; i<pl.getNoOfFields(); i++)
.eval p2.set(i,pl.get(i))

// Print the content of a struct:
/1 firstNane = Casper

/1 | ast Nane = Schnei chel
.for (var i=0; i<pl.getNoCOFFields(); i++) {

.print pl.getFieldNanmes().get(i) + “ =*“ + pl.get(i)
}

Hereisalist of the functions defined on struct values:

26

Data Structures

Table6.1. Struct Value Functions

Functions Description

getStructName() Returns the name of the structure.

getNoOfFields() Returns the number of defined fields.

getFieldNames() Returns alist containing the field names.

get(index) Returns the field value of the field given by an integer
index (0 isthefirst defined filed).

get(name) Returns the value of the field given by a field name
string.

set(index,value) Sets the value of afield given by an integer index..

set(name,value) Sets the value of afield given by aname.

6.2. List Values

List values are used to hold alist of other values. To create a list you use the ‘List()’ function. It takes one
argument that tells how many elementsit contains. If it is left out, the created list will be empty. Use the get and
set operationsto retrieve and set elements.

.var myList = List(2)

.eval nylList.set (0, 25)

.eval nyList.set(1, "Hello world")

. byte nylLi st. get (0) [l WIIl give .byte 25

.text nyList.get(1) [l WIIl give .text "Hello world"

Y ou can determine the number of e ementsin alist with the size-function and the add-function adds additional
elements.

.var greetingsList = List()
.eval greetingsList.add("Fairlight", "Booze Design", "etc.")
.byte listSize = greetingsList.size() /] gives .byte 3

A compact way to fill alist with elementsis:

.var greetingsList = List().add("Fairlight", "Booze Design", "etc.")

Hereisalist of functions defined on list values:

Table6.2. List Values

Functions Description

get(n) Getsthe n'th element (first element starts at zero).

set(n,value) Setsthe n’th element (first element starts at zero).

add(valuel, value2, ...) Add elementsto the end of thelist.

addAll(list) Add al elements from another list.

size() Returnsthe size of thelist.

remove(n) Removes the n’th element.

shuffle() Puts the elements of the list in random order.

reverse() Puts the elements of thelist in reverse order.

sort() Sorts the elements of the list (only numeric values are
supported).

27

Data Structures

6.3. Working with Mutable Values

The list value described in the previous chapter is specia since it is mutable, which means it can change its
contents. At one point in time alist can contain the values[1,6,7] and at another time [1,4,8,9]. The values previ-
ously described in the manual (Numbers, Strings, Booleans) are immutable since instances like 1, false, or “Hello
World” can’t change. In Kick Assembler 3 and later, you will have to lock mutable valuesif you want to use them
in a pass different from the one in which they were defined. When a value is locked, it becomes immutable and
calling a function that modifies its content will cause an error. There are two ways to lock a mutable value. You
can call itslock function:

/1 Locking a list with the |ock function
.var listl = List().add(1,3,5).!1ock()

Or you can define it inside a .define directive:

/1 The define directive |ocks the defined variables outside its scope
.define list2, list3 {
.var list2 = List().add(1,2)

.var list3= List()

.eval list3.add("a")

.eval list3.add("b")
}

//.eval list3.add("c") // This will give an error

The .definedirective definesthe symbolsthat are listed after the .define keyword (list2 and list3). Thedirectives
inside {...} are executed in a new scope so any local defined variables can't be seen from the outside. After
executing the inner directives, the defined values are locked and inserted as constants in the outside scope.

Theinner directivesare executed in 'function mode', which isabit faster and requireslessmemory than ordinary
execution. So if you are using for loops to do some heavy calculations, you can optimize performance by placing
your loop insideadefinedirective. Asthe name'function mode' suggests, directivesplaced insidefunctionsarealso
executed in ‘function mode'. In ‘function mode’ you can only use script directives (like .var, .const, .eval, .enum,
etc) while byte output generating directives (like Ida #10, byte $22, .word $33, .fill 10, 0) are not allowed.

6.4. Hashtable Values

Hashtables are tables that map keys to values. You can define a hashtable with the Hashtable() function. To
enter and retrieve values you use the put and get functions, and with the keys function you can retrieve a list of
all keysinthetable:

.define ht {
/1 Define the table
.var ht = Hashtabl e()

/1 Enter sone val ues (put(key, val ue))

.eval ht.put("rani, 64)

.eval ht.put("bits", 8)

.eval ht.put(1, "Hello")

.eval ht.put(2, "Wrld")

.eval ht.put("directions", List().add("Up","Down","Left","Right"))

/1 Brief ways of initialising tables

.var ht2 = Hashtable().put(1, "Yes").put(2, "No")

.var ht4 = Hashtable().put(1,"a", 2,"b", 3,"c")
}

/'l Retrieve the val ues

.print ht.get(1) /1 Prints Hello

.print ht.get(2) /1 Prints World

.print "ram=" + ht.get("rant') + "kb" /1 Prints ram64kb

28

Data Structures

/[l Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
.print keys.get(i) /[l Prints "ram, "bits", 1, 2, directions
}

When avalueisused asakey then it isthe values string representation that isused. Thismeansthat ht.get(*1.0")
and ht.get(1) returns the same element. If you try to get an element that isn't present in the table, null is returned.

Table 6.3. Hashtable Values

Function Description

put(key,value) Maps 'key' to 'value'. If thekey is previously mapped to
avalue, the previous mapping islost. Thetable itself is
returned.

put(key,value key,value key,value....) Maps several keys to severa values. The table itself is
returned.

get(key) Returns the value mapped to 'key'. A null value is re-
turned if no value has been mapped to the key.

keys() Returns alist value of al the keysin the table.

containsK ey(key) Returnstrueif the key is defined in the table, otherwise
false.

remove(key) Removes the key and its value from the table.

29

Chapter 7
Functions and Macros

This chapter shows how to group directives together in units for later execution. In other words, how to define
and use functions, macros and finally pseudo commands which are a specia kind of macros.

7.1. Functions

You can define you own functions which you can use like any of the build in library functions. Here is an
example of afunction:

.function area(w dth, hei ght) {
.return wi dt h*hei ght
}

.var x = area(3,2)
| da #10+area(4, 8)

Functions consist of non-byte generating directives like .eval, .for, .var, and .if. When the assembler evaluates
the.returndirectiveit returnsthe value given by the proceeding expression. If no expressionisgiven, or if no.return
directive isreached, anull valueis returned. Here are some more examples of functions:

/!l Returns a string telling if a nunber is odd or even
.function oddEven(nunber) {

.if ([nunber&l] == 0) .return “even”

el se .return “odd”

}

/!l Inserts null in all elenents of a |ist
.function clearList(list) {

/! Return if the list is nul

if (list==null) .return

.for(var i=0; i<list.size(); i++) {
list.set(i,null)
}

}

/1 Enmpty function — always returns nul
.function enptyFunction() {

}

You can have severa functions of the same name, as long as they have different number of arguments. So
thisisvalid code:

.function pol yFunction() { .return 0 }
.function pol yFunction(a) { .return 1 }
.function pol yFunction(a,b) { .return 2 }

7.2. Macros

Macros are collections of assembler directives. When called, they generate code as if the directives where
placed at the macro call. The following code defines and executes the macro ‘ SetColor’:

/1 Define macro

.macro Set Col or(col or) {
| da #col or
sta $d020

30

Functions and Macros

/| Execute macro
: Set Col or (1)
Set Col or (2) /1 The colon in front of macro calls is optional fromversion 4.0

A macro can have any number of arguments. Macro calls are encapsulated in a scope, hence any variable
defined inside a macro can't be seen from the outside. This means that a series of macro calls to the same macro
doesn't interfere:

/| Execute macro
Cl ear Scr een($0400, $20) I/ Since they are encapsul ated in a scope
Cl ear Scr een($4400, $20) /1l the two resulting |oop |abels don’t

Il interfere

/| Define macro
.macro C ear Screen(screen, cl earByte) {
| da #cl earByte
| dx #0
Loop: /1 The |l oop |abel can’t be seen fromthe outside
sta screen, x
sta screen+$100, x
sta screen+$200, x
sta screen+$300, x
i nx
bne Loop

Noticethat it is ok to use the macro before it is declared.

Macrosin Kick Assembler are alittle more flexible than ordinary macros. They can call other macros or even
call themselves - Just make sure there is a condition to stop the recursion so you won't get an endless loop.

7.3. Pseudo Commands

Pseudo commands are a specia kind of macros that take command arguments, like #20, table)y or ($30),y as
arguments just like mnemonics do. With these you can make your own extended commands. Here is an example
of amov command that moves a byte from one place to another:

. pseudocommand nov src:tar {

I da src

sta tar
}

Y ou use the mov command like this:

nmov #10 : $1000 [/ Sets $1000 to 10 (lda #10, sta $1000)
nmov source : target /1 target = source (I da source, sta target)
nmov source,x : target,y // (lda source,x , sta target,y)
mov #20 : ($30),y /1 (lda #20, sta ($30),y)

The arguments to a pseudo command are separated by colon and you can use any argument you would give
to amnemonic.

Note: In version 3.x, arguments where separated by semicolon. To make old code compile use the -pseudoc3x
commandline option or convert the code with the 3.x to 4.x converter.

Y ou can add an optional colon in front of the pseudocommand calls. This enables you to call acommand with
the same name as a mnemonic.

. pseudocommand adc argl : arg2 : tar {
| da argl
adc arg2

31

Functions and Macros

sta tar

—

adc #%$10 /1 This calls the standard mmenonic
radc #%$20 : $10 : 320 /1 This calls the pseudoconmand

The command arguments are passed to the pseudo command as CmdValues. These are values that contain an
argument type and a number value. Y ou access these by their getter functions. Here is atable of the functions:

Table7.1. CmdValue Functions

Function Description Example

getType() Returnsatype constant (Seethetable| #20 will return AT_IMMEDIATE.
below for possibilities).

getVaue() Returns the value. #20 will return 20.

The argument type constants are the following:

Table 7.2. Argument Type Constants

Constant Example

AT_ABSOLUTE $1000
AT_ABSOLUTEX $1000,x
AT _ABSOLUTEY $1000,y
AT_IMMEDIATE #10
AT_INDIRECT ($1000)
AT_1ZEROPAGEX ($10,%)
AT _IZEROPAGEY ($10).y
AT_NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above table. Thisis because
the assembler automatically detect when these should be used from the corresponding absolute mode.

Y ou can construct new command arguments with the CmdArgument function. If you want to construct a new
immediate argument with the value 100, you do it like this:

.var nyArgunment = CndAr gunent (AT_I MVEDI ATE, 100)
| da myAr gunment /1l Gves |da #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a function that
given the first argument will return the next in a 16 bit instruction.

.function _16bitnext Argunent (arg) {
.if (arg.get Type()==AT_| MVEDI ATE)
.return CmdArgunent (arg. get Type(), >arg. get Val ue())
.return CrdArgunent (arg. get Type(), arg. get Val ue() +1)

—

We always return an argument of the sametypeastheoriginal. If it'sanimmediate argument we set the valueto
be the high byte of the original value, otherwisewejust increment it by 1. Thiswill supply the correct argument for
the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and IMMEDIATE addressing modes. With this we can easily
define some 16 bits commands:

Functions and Macros

. pseudocommand i ncl6 arg {

inc arg

bne over

inc _16bit next Argunent (ar Q)
over:

}

. pseudocomand nmov16 src:tar {
I da src
sta tar
| da _16bi t next Argunment (src)
sta _16bitnext Argunment (tar)

}

. pseudocomand addl16 argl : arg2 : tar {
.if (tar.get Type()==AT_NONE) .eval tar=argl
clc
| da argl
adc arg2
sta tar
| da _16bi t next Ar gunent (ar gl)
adc _16bi t next Argunment (ar g2)
sta _16bit next Argument (tar)

Y ou can use these like this:

incl6é counter

nov16 #irql : $0314

nmov16 #startAddress : $30
addl6 $30 : #128

addl16 $30 : #$1000: $32

Note how the target argument of the add16 command can be left out. When this is the case an argument with
type AT_NONE is passed to the pseudo command and the first argument is then used as target.

With the pseudo command directive you can define your own extended instruction libraries, which can speed
up some of the more trivia tasks of programming.

33

Chapter 8
Preprocessor

Before the contents of the source file is handed to the main parser, it goes through the preprocessor. The pre-
processor knows nothing of mnemonics or the script language. It's a simple mechanism that enables you to select
pieces of the source to be discarded or included in what the main parser sees. This chapter explains how. (NOTE:
The preprocessor is made like the one used in C# with the addition of #import, #importif and # mportonce so you
might find this familiar)

8.1. Defining preprocessor symbols

The preprocessor uses symbols do determine if it should discard or include portions of the source file. There
are two methods to define a symbol. The first is from the command line. This defines a symbol called TEST":

‘java -jar KickAss.jar -define TEST ‘

A symbol is either defined or not defined. It has no assigned value.
The other way is using the #define directive:

‘#define TEST ‘

Y ou can recognize a preprocessor directive on the '#. If the first non-whitespace character on alineisa'# then
thelineisacall to the preprocessor. If you want to remove the definition of asymbol you use the #undef directive.

‘#undef TEST ‘

8.2. Deciding what gets included

Including or discarding parts of the asourcefileisdone by using #if directives, just likein the script language.

/1 Sinple if block

#i f TEST
inc $d020
#endi f /Il <- Use an endif to close this if block

// You can al so use el se

#f A

.print "Ais defined"
#el se

.print "Ais not defined"
#endi f

Since the source isn't passed on to the main parser, you can write anything inside an untaken if, and it will
still compile.

#undef UNDEFI NED_SYMBOL
#i f UNDEFI NED_SYMBOL

Here we can wite anything since it will never be seen by the main parser...
#endi f

#elif isthe combination of an #else and an #if. It can be used like this:

#if X
.print "X
#elif Y
.print "Y"

Preprocessor

#elif z

.print "Zz"
#el se

.print "Not X, Y and Z"
#endi f

The #if blocks can be nested:

#if A
#if B
.print "A and B"
#endi f
#el se
#if X
.print "not A and X'
#elif Y
.print "not A and Y"
#endi f
#endi f

The indentations doesn't change anything, its just to make the code easier to read.

8.3. Importing files

To include another sourcefile in your code, use the #import directive. Y ou can also make a conditional import
with the #importif directive.

#i nport "MyLi brary. asnf

#i nmportif STAND ALONE "Upstart Code.asnml' //<- Only inported if STAND ALONE is
def i ned

To ensure that afile (e.g. alibrary) is only imported once, place an #importonce inside the imported file

Filel. asm

#i nmport once

.print "This will only be printed once!"
File2. asm

#inmport "Filel.asm' // This will inmport Filel

#inmport "Filel.asm' // This will not inport anything

8.4. List of preprocessor directives

All the preprocessor directives are seen here:

Table8.1. Preprocessor directives

Directive Description

#define NAME Defines a preprocessor symbol by the given name

#undef NAME Removes the symbol definition of the given name, if
any.

#import "filename" Imports afile at the given place in the source.

#importif EXPR "filename" Imports afileif agiven expression evaluates to true.

#importonce Makes sure the current file is only imported once

#if EXPR Discardsthefollowing sourceif the given expression
evaluatesto false.

35

Preprocessor

Directive Description

#endif Ends an #if or #else block.
#else Creates an €l se block.
#elif EXPR The combination of an #else and an #if directiveB

8.5. Boolean operators

A symbol works like a boolean. Either its defined or its not. The #if, #elif and #importif directives takes an
expression that contains symbols and operators and returns either true of false. Here are some examples:

#i f | DEBUG && ! COVPLI CATED
[/l sone stuff
#endi f

#if DEBUG || (X && Y && Z) || X==DEBUG
/1 Note that you can al so use parenthesi s#

#i mporti f DEBUGR&STANDALONE " Upst art Wt hDebug. asnf'

Hereisalist of operators:

Table 8.2. Preprocessor operators

Operator Description

! Negates the expression
&& Logical and.
Il Logical or.

== Returnstrue if the operands are equal.

I= Returnstrueif the operands are not equal.

0 Parenthesis can be used to controll order of evalua
tion

36

Chapter 9
Scopes and Namespaces

Scopes and namespaces are use to avoid entities like symbols and functions in different parts of the program
to collide with each other. This section will cover how they works.

9.1. Scopes

Scopes are containers of symbols (variables, constants and labels). There can only be one symbol of each name
in ascope. Scopes are automatically in many situations. For example, ascopeis set up when you execute amacro.
This prevent the internal labelsto collide if you execute the macro twice.

The easiest way to define a scope yourself is using brackets.

.var x =1

{
}

.var x = 2 /] <- this x won't collide with the previous

9.2. Namespaces

Namespaces are containers of functions, macros and pseudocommands. There can only be one of each of these
entitiesin namespace. Every namespace also have an its own associated scope so each time you define anamespace
ascopesis automatically defined.

A simple way to declare a namespace is shown in the following example. The namespace directivesis covered
in more detail later (and often the .filenamespace directive is more handy):

.function nyFunction() { .return 1}

| abel 1:

. hanmespace nySpace {
.function nyFunction() { .return 1} // <- This won't collide
| abel 1: <- This won't collide

Namespace can be declared more than once. The second time you declare it, it will simply continue with the
already existing namespace.

. nanespace repeat edSpace {
endl ess: jmp *
.function nyFunc() { return 1}

}

. hanmespace repeatedSpace { // <- Don't give an error, we reuse the nanespace
jmp endl ess
.function nmyFunc() { return 2} // <-- This gives an error, nyFunc is already
def i ned

}

If you arein doubt of which nhamespace you are in, you can get its name by the ‘getNamespace()’ function.

.print "Nanespace = "+get Namespace()
. nanespace MySpace {
.print "Namespace = "+get Nanespace()
. nanespace MySubSpace {
.print "Nanespace = "+get Namespace()

}

The above will output:

37

Scopes and Namespaces

Namespace = <Root NS>
Nanespace = MySpace
Namespace = MySpace. MySubSpace

9.3. Scoping hierarchy

Namespaces and scopes are organized in an hierarchy. Every namespace have a parent, except for the system
namespace which is the namespace that contains al the build in functionality of Kick Assembler. Below thisis
the root namespace. As the name implies its the root namespace of the source code.

So the hierarchy islikethis:

1. System namespace & scope - Contains system mnemonics, constants, functions, macros and pseudocom-
mands.

2. Root namespace & scope - Theroot of the source code.

3. User defined namespace & scopes - Created by namespace directives.

4. User defined scopes - Created by macros, functions, for-loops, brackets {}, etc.
5. More user defined scopes...

Letslook at an simple example. It contains some scopes and some nonsense code :

*=$1000
start:
loop: //<-- 'loop' defined in the root scope
{ /Il <-- bracket scope 1
| oop:
{ /Il <-- bracket scope 2
| dx #0
| oop: stx $d020
i nx
bne | oop
jnmp start
}
}

The above code will form the scope hierarchy: System scope <- Root Scope <- BracketScopel <- BracketS-
cope2.

When Kick Assembler resolvesasymbol, it checksif it is present in the the current scope. If it can't be found it
looksin the parent scope. If it still can't be found it looksin the parent scope of the parent and so forth. In the above
example, the'jmp loop' is placed in BracketScope2, so 'loop' isresolved to the loop symbol in BracketScope2. But
'start’ is not defined in BracketScope2 or BracketScopel so it will be resolved to the label in the root scope.

Since no namespaces are defined in the above, the namespace hierarchy is; System namespace <- Root Name-
space. The entities of namespacesis resolved similar to the scope resolving mechanism explained above.

9.4. The Namespace Directives

As aready seen you can declare namespaces with the namespace directive. When declared it places a symbol
inside the scope the parent namespace so the label sinside can be accessed aslocal fields of the namespace symbol:

. nanespace Vi c {
.l abel border Col or = $d020
.l abel backgroundCol or0 = $d021
. | abel backgroundCol or1 = $d022

38

Scopes and Namespaces

.| abel backgroundCol or2 = $d023

| da #0
sta vic. backgroundCol or0
sta vic. border Col or

Namespaces are normally used to make sure that code in a source file (Like a library) is not colliding with
other parts of the code. For this, Place the filenamespace directive at the top of the file and everything after that
is placed in the desired namespace:

/* FILE O */

jsr partl.init
jsr partl.exec
jsr part2.init
jsr part2.exec

rts
/* FILE 1 */
.fil enanespace partl
init:
rts
exec:
rts
/* FILE 2 */
.fil enanespace part2
init:
rts
exec:
rts

9.5. Escaping the current scope or namespace

To escape the current scope, use @ to reference the root scope. In the following code '@myL abel' access the
myL abel label in the root scope:

.l abel nyLabel =1

{
.l abel nyLabel = 2
.print "scoped nyLabel ="+ nylLabel //<-- Returns 2
.print "root myLabel ="+ @wyLabel //<-- Returns 1
}

The same can be done for functions, macros and pseudo commands. So the following example will print ‘root'
not 'mySpace’:

.function nyFunction() { .return "root"}

. nanespace nySpace {
.function nyFunction() { .return "nmySpace" }
.print @yFunction()

39

Scopes and Namespaces

Y ou can also put new entitiesin the root scope when defining them from within another scope:

j sr outside_l abe

rts
{
@ut si de_| abel :
| da #0
sta $d020
sta $d020
rts
}
or:
{
.label @ = 1234
.var @= "Hello world"
.const @= true
}

.print "x="+x
.print "y="+y
.print "z="+z

Or for functions, macros or pseudo commands, here shown in alibrary file:

#i nmport "nylib.lib"

.print nyFunction()

MyMacr o()
MyPseudoConmand

/* File nylib.lib */
#i nport once
.fil enanespace MyLi brary

.function @ryFunction() {
.return 1

}

.macro @yMacro() {
.print "Macro Call ed"
}

. macro @& PseudoConmand {
.print "PseudoConmand Cal | ed"

}

9.6. Label Scopes

If you declare a scope after alabel you can access the |abels inside the scope as fields on the declared label.
Thisis handy if you use scoping to make the labels of your functions local:

lda # °

sta clearScreen.fillbyte+l
j sr cl earScreen

rts

cl ear Screen: {
fillbyte: |da #0

40

Scopes and Namespaces

| dx #0

| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

The above code fills the screen with black spaces. The code that calls the clearScreen subroutine use
clearScreen.fillbyte to access the fillbyte [abel. If you use the label directive to define the fillbyte label, the code
can be done alittle nicer:

lda # &’

sta clearScreen2.fill byte
j sr cl ear Screen2

rts

Cl ear Screen2: {
.label fillbyte = *+1
| da #0
| dx #0

| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

Now you don't have to remember to add one to the address before storing the fill byte.

Label scopes also works with the label directive, so its also possible to write programs like this:

.l abel nyl abel 1= $1000 {
.l abel nyl abel 2 = $1234
}

.print “nylabl e2="+nyl abel 1. nyl abel 2

9.7. Accessing Local Labels of Macros and Pseudocommands

Label scopes are also created when placing a label before a macro or pseudocommand execution as demon-
strated in the following program:

*=$1000
start: inc cl.color

dec c2. col or
cl: :set Col or ()
c2: :set Col or ()

jmp start

.macro setColor() {
.l abel color = *+1
| da #0
sta $d020

In this way, you can access the |abels of an executed macro.

41

Scopes and Namespaces

9.8. Accessing Local Labels of For / While loops

By placing alabel in front of afor or awhile loop, alabel scope array is created. Thisway you can access the
inner labels of aloop from the outside or the labels of one loop from another loop:

for (var i=0; i<20; i++) {
| da #i
sta |l oop2[i].col or+1

}
loop2: .for (var i=0; i<20; i++) {
col or: | da #0
sta $d020
}

9.9. Accessing Local Labels of if's

By placing alabel in front of an .if directive you can access the labels of the taken branch (true or false) of the
directive. The symbol need only to be defined in the taken branch. If the condition is evaluated to false and no
false branch exists, all references to symbols give an 'symbol undefined' error . Here is an example:

jmp nylf.labe

mylf: .if (true) {

| abel : iaé #0 // <-- Junps here
} else {

label: nop

}

42

Chapter 10
Segments

10.1. Introduction

Segments are lists of memory blocks which are used to organize your code. Y ou can use them to define the
order which things are placed in memory (data after code etc). Y our can combine segmentsto form new segments
and you can use modifiers to process the output of a segment. Finally, you can direct the output of a segment to
afiles or disks or simply throw it away.

Thisisimplemented in Kick Assembler in abackward compatibleway, so if you don't use segments, everything
is placed on a default segment and directed to the standard output file as you are used to.

10.2. Some quick examples

Before we go into detail with how segments work, let us take alook at some examples of use. Y ou might not
understand everything in the following examples, but it helps to know where we are heading before going into
the details.

If you want to have one section of you code output to another file you can assembleit into a segment and write
that segment to afilelike this:

.segnent Filel [outPrg="MFile.prg"]
*=$1000
| da #00
nore code ...
.segnment Default

If you want to patch afile you can load the file into a Base segment, put a Patch segment on top of it with the
modifications and write the result to afile. Since the Patch is on top it will overwrite the base:

.file [name="CQut.prg", segnments="Base, Patch", allowOverl ap]
.segnment Base [prgFil es="basefile.prg"]
.segnent Patch []

*=$8021 "Insert junp"
j np $8044

Segments can also be used for outputting code in alternative formats. Here is an example writing code for a
cartridge with 4 banks:

. segnment CARTRI DGE_FI LE [out Bi n="nyfil e. bi n"]
.segnent out [segnments ="BANK1"]
.segnent out [segnments ="BANK2"]

. segnent out [segnments ="BANK3"]
.segnent out [segnments ="BANK4"]

. segnent def BANK1 [mi n=$1000, nmax=$1fff, fill]
. segnent def BANK2 [m n=$1000, nmax=$1fff, fill]
. segnent def BANK3 [m n=$1000, nmax=$1fff, fill]
. segnent def BANK4 [m n=$1000, max=$1fff, fill]

. segnent BANK1
..code for segnent 1 goes here...

. segnent BANK2
..code for segnent 2 goes here...

. segnent BANK3
..code for segnent 3 goes here...

43

Segments

. segment BANK4
..code for segnent 4 goes here...

A segment is set up for each bank and they are output in the right order to a binary file. The code in the 4
segments is restricted to the address space $1000-$1fff. Notice how the same address space can be used multiple
times, since the code resides in different segments.

10.3. Segments
In Kick Assembler, asegment isalist of memory blocks, so let'slook at thesefirst.

A memory block is generated each time you use the *= directive. It has a start, an optional name and might
be marked as virtual. If you add code without defining a memory block first, a default block is created for you.
Here are examples of memory blocks.

inc $d020 /1l This create a default nenory bl ock
jnp *-3

*=$1000 /1 Start of menorybl ock 2 (unnaned)
| da #1

sta $d020

rts

*=$4000 "bl ock3" // Start of nenorybl ock 3
| da #2

sta $d021

rts

A segment is alist of memory blocks. Since you haven't selected any segment in the above code, they are all
placed on the 'Default’ segment.

A segment is defined by the .segmentdef directive and you use the .segment directive to decide which segment
to add code to:

/1 Define two segnments
. segnment def MySegnent 1
. segnent def MySegnent 2 [start=$1000]

/1 Add code to segnentl
. segnent MySegnent 1
*=$4000
| dx #30

I 1: inc $d021
dex
bne |1

/! Add code to segment2 (Using default block starting in $1000)
. segnent MySegnent 2
inc $d021

jmp *-3
/1 Switch back to segmentl and add nore code.

. segnent MySegnent 1
i nc $d020

jmp *-3

In the above code MySegment1 is defined used the default parameters for a segment. While MySegment?2 is
defined setting the start address for the default memory block to $1000. A complete list of parameters is given
in the end of this chapter.

Notice that you can switch back to asegment at any time and continue adding code to its current memory block.

44

Segments

Sometimes, it's convenient to define amemory block and switch to it with the same command. Thisis done by
adding a parameters block ([...]) to the segment directive.

[l This:
. segnment MySegnment [start=$1000]

/1 Is a shorthand notations for this:
. segnent def MySegnent [start=$1000]
. segnent MySegnent

A segment can only by be defined once so the above will give produce an error saying that ‘MySegment' is
double defined.

10.4. Where did the output go?

If you compile the previous segment examples you will find that it produces no output. So where did the code
go? Theanswer isnowhere - we defined segmentsbut didn't direct their content anywhere. However we can still see
their content using the -bytedump option on the command line when running KickAsssembler. That will generate
the file 'ByteDump.txt' with the bytes of the segments. The example from the previous section looks like this:

EE R I S I I S I I S I I S I I T Segrrent mfault EE R SR I I S I S T I S I I O I S I S
EE I I S I I I T O I Segrrent WSengentl EE R I S I I I S I
[Unnaned]

4000: a2 1le - ldx #30

4002: ee 21 dO - inc $d021

4005: ca - dex

4006: dO fa - bne I'1

4008: ee 20 dO - inc $d020

400b: 4c 08 40 - jnp *-3

EE I I S I I I S I T I O Segrrent WSengentz EE R I S I I S I S I
[M/Segnent 2]

1000: ee 21 dO - inc $d021

1003: 4c 00 10 - jnp *-3

The simplest way of getting the code to a program file isto specify a'outPrg' parameter:

.segnment Code [outPrg="col ors.prg"]

*=$1000
inc $d020
jmp *-3

If you use the 'outBin' parameter instead a binary file will be output. In the output chapter you can see more
options for outputting segmentsto files or disks images.

10.5. The Default segment

If you don't want to use segments you don't have to. If you don't switch segment using the .segment directive
the code is placed on the 'Default’ segment which is connected to the the standard output file. In the byte dump in
the previous sections you can see the 'Default’ segment is empty.

If you want to return the default segment after adding code to another segment simply write:

. segnment Def aul t

10.6. Naming memory blocks while switching segment

One use of segmentsisto place code/datathat istied together but should be located different placesin memory,
close together in the source code. This leads to a coding style where you may want to name a new block of code
every timeyou switch segment. Y ou could do thisby adding amemblock directiveright after the segment directive.
But as a convenient shorthand you can just place atext string after the segment switch:

45

Segments

/] This
.segnment Code "My Code"

/1l I's the same as this
. segnent Code
. menbl ock "My Code"

To demonstrate this style is here given alarger example. Some of the features are first covered later. :

. segnent def Code [start=%$0900]

.segnent def Data [start=$8000]

.file [name="segnents. prg", segnments="Code, Data", nodify="BasicUpstart", margl=
$0900]

L A
/1 Main
L A
. segnent Code " Main"
j sr col or Set up
j sr textSetup
rts
L A
/] Col or
L A

.segnent Code "Col or Setup”
col or Set up:

I da col ors

sta $d020

I da col ors+1

sta $d021

rts

.segnent Data "Col ors"
colors: .byte LIGHT_GRAY, DARK GRAY

.segnent Code "Text Setup"
text Set up: {
| dx #0
| oop: | da text, x
cnp #$ff
beq out
sta $0400, x
i nx
jnp | oop
out :
rts

.segnent Data "Static Text"
text: .text "hello world!"

.byte $ff
}

Y ou will now get amemory map like this, when you use the -showmem’ option:

Code- segnent :
$0900- $0906 Mai n
$0907- $0913 Col or Set up

46

Segments

$0914- $0924 Text Setup

Dat a- segnent :
$8000- $8001 Col ors
$8002- $800e Static Text

The code and data are now separated in memory, but close together in the source code.

Note that scoping and segments don't affect each other so you can switch segmentswithin ascope. In the above
its used so the 'text' label islocal. It can be seen from textSetup code but not from other routines. If you want to
have a scroll text routine it could have its own 'text’ label and they wouldn't collide.

10.7. The default memory block

Code placed inside a segment is added to the default memory block until a block is explicitly defined (Not to
be confused with the 'Default’ segment):

. segnment Code [start=$1000]

i nc $d020 /'l Places code in the default nenorybl ock
jm *-3

*=$2000 [/ Start a new menorybl ock

inc $d021

jm *-3

Thedefault memory block isspecial sinceit can be controlled by parameters given when the segment is defined.
Notice the 'start=$1000" parameter that sets the start of the default memory block.

In some cases you want one segment to start after each other. This is done with the 'startAfter' parameter.

. segnent def Code [start=%$1000]
.segnmentdef Data [startAfter="Code"]

The ability to control codein thisway can be useful, for instance when you want to save memory. If you have
some initialization code, that is only used once in the upstart phase, then you could place it after the rest of the
code, and use the same memory for a buffer that is used after the init phase:

.file [name="program prg", segnents="Code, |nitCode"]

. segnent def Code [start=$1000]
.segnentdef |nitCode [startAfter="Code"]
. segnent def Buffer [start Aft er="Code"]

.segnment Buffer
tablel: .fill $100, O
table2: .fill $100, O

Notice that overlapping code only gives an error if it'sinside the same segment. So you can place code in both
'InitCode’ and 'Buffer' without getting errors. The Code and InitCode segments are saved in the file while the
Buffer isthrown away.

By using the 'align’ parameter together with 'startAfter’ you align the default memory block.

. segnent def Code [start=$8000]
.segnmentdef Virtual 100 [start After= "Code", align=$100, virtual]

.segnent Code "Sone code"
| dx #$f f
| da table, x

.segnent Virtual 100 "Tabl e"
table: .fill $100,0

47

Segments

By the memory map printed while assembling, you see the start of the Virtual 100 segment is aligned to a$100
boundary to avoid spending an extra cycle when accessing the table:

Code- segnent :
$8000- $8004 Sonme code

Vi rt ual 100- segnent :
*$8100- $81ff Tabl e

In the above example was also used 'virtual' (When no '=' is present its shorthand for 'virtual=true') to declare
all the memory blocksin the virtual 100 segment virtual. In most cases this won't be necessary since you just don't
direct the segment anywhere so the generated bytes are thrown away, but in some cases it can come in handy.

'segmentAfter’ works by taking the last defined memory block (Either the default or user defined by *=) and
starts where this ends. Block included in other ways (imported from other segments, included from files etc.) are
not considered.

10.8. Including other segments

Y ou can include the memory blocks from other segmentsinto the a segment by using the 'segments’ parameter
when defining the segment:

.segnent def Upstart [start=$0801]

. segnent def Code [start=$1000]

. segnent def Data [st art=$3000]

.segnmentdef Conbil [segnents="Code, Data"]

.segnment def Conbi 2 [segnents="Code, Data, Upstart"]

A segment can be included in multiple other segment as seen by the 'Code’ and 'Data’ segment in the above
example.

This can be combined freely with adding code from other sources or directly using commands (Ida, sta) inside
the segment.

10.9. Including .prg files

A prg-file contains a start address (the two first bytes) and some data. Prg files can be imported as memory
blocks using the prgFiles parameter when defining the segment:

/1 Inporting prg files when defining segnent
.segnentdef M scl [prgFil es="data/Misic.prg, data/Charset2x2.prg"]

/1 Anot her way of producing the sanme result
.segnent M sc2 []

*=$1000 // Here we have to place the bl ock manual |y
.import c64 "data/ Misic.prg"

*=$2000 // Here we have to place the bl ock manual |y
.import c64 "data/ Charset2x2. prg"

Again, this can freely be combined with other ways of adding blocks to the segment.

10.10. Including sid files

Sid music files are imported as memory blocks using the 'sidFiles parameter. Here is an example that plays
asid tune:

.segnment Main [sidFil es="datal/nusic.sid", outPrg="out.prg"]

48

Segments

Basi cUpstart 2(start)

start: sei
| da #00
t ax
tay
jsr $1000

| oop: | da #3$f0
cnmp $d012
bne | oop
i nc $d020
jsr $1003
dec $d020
jmp | oop

10.11. Boundaries

It is possible to set a minimum and maximum address of the segment using the 'min’ and 'max’ parameters. If
ablock gets outside the given boundaries, it will give an error:

.segnent Data [start=$c000, m n=$c000, max=$cfff]

.fill $1800, O // Error since range is $c000- $d7f f

In some cases it is useful to ensure a segment have a specific site. By setting the fill* parameter to true al non
used values in the min-max rangeis set to the fill byte:

// This will generate $1000: 0,0,1,2,3,0,0,0
.segnent Data [m n=$1000, nax=$1008, fill]
*=$1002

.byte 1,2,3

In the above example the fill byte is zero, but it can be specified with the 'fillByte' parameter.

Restricting size can be used to avoid using the ROM area or simply enforcing the rules of a maximum size
of 256 or 128 bytes.

The following entry was submitted to the 128 byte font competition on CSDb by Jesper Balman Gravgaard
(Rex). It rotatesthe ROM font 90 degrees. The max size of 128 bytesincludesthe two address bytes of the prg file.

/1 90 degree rotated ROM font in 69 bytes of code
. segnment Main [m n=$0801, nax=$0880-2, out Prg="out.prg"]

.| abel SCREEN = $400
.l abel CHARGEN = $d000
.l abel CHARSET = $3000

*=$0801 "Basic"
Basi cUpst art (ch2)

*=$080d " Pr ogr ant'

ch4: dey /1 Wait for 8 char |ines
bne ch
| da pi x+1 /1 Next char
clc
adc #8
sta pix+1

ch2: sei /] Start char
| da #$32
sta $1
| dy #8

49

Segments

ch: |da CHARGEN // Start char line
| dx #7
npi : asl /] Start pixe
pi x: rol CHARSET, x
dex
bpl npi
inc ch+l /1 Next char |ine
bne ch4
inc pix+2 /1 Inc both high bytes
inc ch+2
bne ch4 // Run until CHARGEN is $0000
ee:
| da #$37
sta $1
cli
| da #SCREEN $40| CHARSET/ $400
sta $d018
rts

10.12. Overlapping memory block

When all blocks of a segment are assembled, any overlaps are detected. Normally overlaps will give an error
but you can allow overlap with the 'allowOverlap' parameter. Thisis useful if you want to patch files. Hereisan
example where the file "base.prg" is applied two changes and saved to the file "patched.prg":

/1 Setup

.file [name="pat ched. prg", segments="Base, Patch", all owOverl ap]
.segnent def Base [prgFil es="dat a/ base. prg"]

.segnent def Patch []

/| Patch Code

. segment Patch
*=$3802 "Insert jnp"
jmp $3fe0

*=$38c2 "Insert |da #$ff"
| da #$f f

The memory map looks like this:

Base- segnent :
$3800- $39f f base. prg

Pat ch- segnent :
$3802- $3804 | nsert jnp
$38c2-$38c3 I nsert |da #$ff

In the above example we have a base segment with the origina file and a patch segment with the modifica-
tions. They are combined in the intermediate segment generated by the file directive which has the allowOverlap
parameter set.

Overlapping blocks are cut so the byte from the block with the highest priority are returned. The latest added
blocks wins so since the 'Patch’ segment lies after 'Base’ in the segments list the patch code is chosen.

10.13. Segment Modifiers

The memory block of a segment can be modified before it is passed on to its consumers. A segment-modifier
takesalist of memory blocks asinput and outputs a modified list of memory blocks.

The build in 'BasicUpstart' modifier adds a memory block in $0801 with a basic upstart program that jumps
to agiven address:

50

Segments

.file [name="test.prg", segnments="Code"]
. segnent Code [start=$8000, nodify="BasicUpstart", _start=$8000]
inc $d020

jmp *-3

The 'modify’ parameter assigns the '‘BasicUpstart’ modifier. As a convention, arguments to the modifier has a
__appended in front, so'_start' is an argument for the BasicUpstart modifier.

Users can write their own modifiers as plug-ins (Crunchers etc.) as shown in the plug-in chapter.
Hereisalist of build in segment modifiers:

Table10.1. Build in modifiers

Description

BasicUpstart _start Adds a memory block with a ba-
sic upstart program that pointsto the
given start address.

10.14. Intermediate segments

When segments are used in other directives than the .segment and .segmentdef directive its often done using
an intermediate segment. Memory blocks are passed on through an implicit created segment which givesyou alot
of the functionality explained in this chapter simply by using the same parameters.

E.g. This means that you can use the file directive like this:

.file [name="nyfile.prg", segnents="Code, Data", sidFiles="nusic.sid"]

The only parameter that is special for the file directive is'name’. The rest is standard parameters for directives
using intermediate segments. For a complete list of intermediate parameters see the 'List of segment parameters
section placed last in this chapter.

10.15. The .segmentout directive

The .segmentout directive placesthe bytes of an intermediate segment in the current memory block. Thiscan be
used for reallocating code or datalike with the .pseudopc directive. It isalso good for outputting datain alternative
formats as shown in the 'quick examples' section.

Here is an example that execute some code in the zeropage:

/1 Main code

Basi cUpstart2(start)
start: sei

| dx #0
| oop: | da zpCode, x

sta zpStart, x

i nx

cpx #zpCodeSi ze

bne | oop

jmp zpStart

zpCode: .segnentout [segnents="ZeroPage_ Code"]
.l abel zpCodeSize = *-zpCode

/'l Zer opage code

. segnent Zer oPage_Code [start=%$10]
zpStart:

inc $d020

jm *-3

In the memory map, you can now see the zeropage code:

51

Segments

Def aul t - segnent :
$0801- $080c Basi ¢
$080e- $0824 Basi ¢ End

Zer oPage_Code- segment :
$0010- $0015 Zer oPage_Code

Since the bytes are supplied through an intermediate segment all intermediate parameters can be used. In the
following example, asid fileis placed at an alternative address:

*=$8000 "Music Data"
.segnment out [sidFil es="data/nusic.sid"]

10.16. Debugger data

You can mark segments with a destination using the 'dest' parameter. A destination could be 'DISKDRIVE,,
'BANK1', 'BANK2' etc. The parameter doesn't change anything, but is passed on to debuggers that can use the
value to organize debug data. For example labels defined in a segment which destination is the disk-drive, should
not be mixed with the code which isin the computer. The parameter is used like this:

‘ . segnment def [dest="DI SKDRI VE"]

The meaning of each destination name is defined by the debugger.

10.17. List of segment parameters
Table 10.2. Segment parameters

Intermediate Parameter Example Description

align align=$100 Alignsthe default mem-
ory block to a given page
size. Used together with

'StartAfter'
X allowOverlap alowOverlap Allows overlapping
memory blocks
dest dest="1541" Set the destination of

the segment. (This is info
for external programs like

C64debugger)

X fill fill Fills unused bytes be-
tween min and max with
thefill byte

X fillByte fillByte=$88 Set the value of the fill
byte. If not specified, it will
be zero.

X hide hide Hides the segments in
memory dumps.

X margl, marg2,.., marg5 marg1=$1000, Argumentsfor amodifi-

marg2="hello" er.

X max max=$cfff Sets the maximum ad-
dress of the segment.

X min min=$c000 Sets the minimum ad-

dress of the segment.

52

Segments

Intermediate Parameter Example Description

X modify modify="BasicUpstart" Assigns a modifier to
the segment.

outBin outBin="myfile.bin" Outputs a bin-file with
the content of the segment.
outPrg outPrg="myfile.prg" Outputs a prg-file with
the content of the segment.
X prgFiles prgFiles="data/ Includes program files
music.prg, da-|as memory blocks.
ta/charset2x2.prg”

X segments segments="Code, Data’ | Includes memory
blocks from other seg-
ments.

X sidFiles sidFiles="music.sid" Include the data of asid
file asamemory block.

start start=$1000 Set the start of the de-
fault memory block to the
given expression

startAfter startAfter="Code" Makes the default mem-
ory block start after the giv-
en segment.

virtual virtual Makes all the memory

blocks in the segment vir-
tual.

53

Chapter 11
PRG files and D64 Disks

11.1. Introduction

This chapter explains how to create prg-files and d64 disk images using the .file and .disk directive.
The filedirectiveisquite straight forward, but addsafew extraoptions over the outPrg parameter for segments.

With the .disk directive you can use Kick Assembler as a standalone disk creation tool, by selecting files from
the hard disk to add to a disk image, or you can assemble directly to the disk using segments, or you can mix the
two methods.The directive collects parameters and sends them to a disk writer which can either be the build in
disk writer or one given by a plug in. The build in default writer is based on the 'CC1541' disk tool by Andreas
Larsson, and should cover all needs when creating standard disks. With specialized writers from plugins you can
write disks for specific loaders etc.

A big thanks to Andreas for rewriting CC1541 to Javafor usein Kick Assembler!

11.2. Parameter Maps

The .file and .disk directives use parameter maps to describe their parameters. These are square brackets with
comma separated parameters:

‘[nama:" Bob", age=27, used asses=fal se, wearsTshirt]

Y ou can assign any type of value (strings, numbers, booleans, etc) to a parameter. Notice the last parameter has
no assignment. Thisisashort notation for assigning the boolean value 'true’ to the parameter (‘wearsT shirt=true').

11.3. The File Directive
Thefiledirectiveisused like this:

/| Save a prg file containing the code segnment
.file [name="M/Fil e. prg", segnents="Code"]

/! Save a bin file containing the code and data segnent
.file [name="M/Fil e. bin", type="bin", segnments="Code, Data"]

/| Save one file for each nmenorybl ock in the DATA segnent
[/l ('Data_Sinus.prg’ and 'Data_Mil 3. prg' are created)
.file [name="Data. prg", nbfiles, segnents="Data"]

/1 Define some segnents

.segnment Code []

Basi cUpstart 2(start)
start: inc $d020

jmp *-3

.segnent Data []
*=$0f 00 " Mul 3"
Lfill $40, i*3

*=$2000 "Si nus"
Lfill $100, 127.5 + 127.5*si n(toRadi ans(i *360/ 256))

The content of the file is given using an intermediate segment which makes it quite flexible. See the segment
chapter for all options or the disk directive sections for more examples.

The name parameter is mandatory, therest is optional. Here are the list of specific .file directive parameters:

54

PRG files and D64 Disks

Table11.1. File Directive Parameters

Parameter Default Example Description
mbfiles fase mbfiles If set to true, afileis creat-
ed for each memory block.
name name="MyFile.prg" The name of thefile.
type "prg" type="bin" Sets the file type. Valid

types are"prg" and "bin"

11.4. The Disk Directive

The disk directives has the following format:

. di sk OPT_WRI TERNAVE [...DI SK PARAVETERS. .] {
[..FILEL PARAVETERS..],
[..FILE2 PARAVETERS..],
[..FILE3 PARAVETERS..],

The writer name is optional, if left empty the default disk writer is called. Otherwise the writer name is used
to look up a 3rd party disk writer imported from a plug in. In the following sections described how the default
writer works.

11.5. Disk Parameters

The ssimplest disk you can create is by only giving the filename of the disk image. The rest of the parameters
isthen filled out by default values:

.disk [filename="MDi sk.d64"]

{
}

You fill in extra parameters as a comma separated list. Here we add a disk name and an id, which is displayed
in the top of the directory:

.disk [filename="MnDisk.d64", name="THE DI SK", id="2021!"]

{
}
The complete of possible parametersfor the disk is:
Table 11.2. Disk parameters
Parameter Default Example Description
dontSplitFilesOverDir false dontSplitFilesOverDir If set to true, the file that
would otherwise have sec-
tors on both sides of the di-
rectory track will be moved
to after the directory track.
filename filename="MyDisk.d64" | Thenameof thedisk image
format "commodore" format="commaodore" Sets the format of the disk.
The options are: "com-
modore”, "speeddos”, "dol-
phindos"
id " 2A" id="2021!" Thedisk id

55

PRG files and D64 Disks

Parameter Default Example Description

interleave 10 interleave=10 Sets the default interleave
value for the disk

name "UNNAMED" name="THE DISK!" The disk name

showlnfo false showlnfo Print info about the gen-

erated disk after creation.
(Start track, sector etc.)

storeFilesInDir false storeFilesInDir If set to true, files can be
stored in the sectors of the
directory track not used by
the directory itself.

11.6. File Parameters

Now let's get some files from different sources on the disk:

.disk [fil ename="M/Di sk. d64", nane="THE DI SK", id="2021!"]

{
[name="---------------- ", type="rel" 1,
[nane="BORDER COLORS ', type="prg", segnents="BORDER COLORS"],
[nanme="BACK COLORS ', type="prg<", segnents="BACK COLORS" 1,
[nane="HI DDEN ', type="prg", hide, segnents="H DDEN'],
[name="---------------- ", type="rel" 1,
[name="MJSI C FROM PRG ", type="prg", prgFiles="data/nusic.prg"],
[name="MJUSIC FROM SID ", type="prg", sidFiles="data/nusic.sid"],
[name="---------------- ", type="rel" 1,

}

. segment BORDER COLORS []
Basi cUpstart2(start1)
start1l: inc $d020

jnp *-3
. segnent BACK COLCRS []

Basi cUpstart 2(start 2)
start2: dec $d021

jm *-3

. segnment HI DDEN []
.text "THI S IS THE H DDEN MESSAGE! "

The content of afileisdone using an intermediate segment, which gives awide range possibilities of specifying
input. In the example, the content of the first three prg files comes from the segments specified below. The third
uses a prg file from the hard drive and the fourth the content of asid file. For al the possihilities of working with
intermediate segments, see the segments chapter.

The'name' and 'type’ parameters specifies the name and type of thefile. Notice the '<' at the end of the second
prg type which means the file is locked.

The third prg file is not shown in the directory due to the 'hide' option. Y ou can get its start track and sector
by using the 'showlInfo' disk parameter.

A complete list of parametersis given here.

Table 11.3. General File parameters

Parameters Example Description

hide false hide If set to true, the file will
not be shown in the direc-
tory.

56

PRG files and D64 Disks

Parameters Default Example Description

interleave The disks default interleave = 10 Sets the interleave of the
file.

name name="NOTE" The filename

type "prg" type="prg<" The type of the file. Avail-

abletypesare: "del", "seq",
"prg", "usr", "rel". You can
append a "<" to the end
of the type to mark it as
locked

11.7. Custom Disk Writers

A custom disk writer is written in a plug in. Refer to the "3rd Party Java plugins' if you want to implement
one yourself.

Itiscalled like this:

.plugin "nmyplugi ns. Mydi skwriter”

.disk MyDiskWiter [.. disk parans...]
{

[..file parans.., segments="Code, Data"],
[..file params.., prgFiles="datal/nusic.prg"],

57

Chapter 12
Import and Export

In this chapter we will look at other ways to get datain and out of Kick Assembler.

12.1. Passing Command Line Arguments to the Script

From the command line you can assign string values to variables, which can be read from the script. Thisis
done with the*:" notation like this:

‘j ava —jar KickAss.jar mySource.asm :x=27 :sound=true :title="Beta 2"

The three variables x, sound and beta2 and their string values will now be placed in a hashtable that can be
accessed by the global variable cmdLineVars:

.print “version =" + cmdLi neVars. get(“version”)
.var x= cndLi neVars. get (“x”).asNunber ()

.var y= 2*x

.var sound = cndLi neVars. get (" sound”) . asBool ean()
.if (sound) jsr $1000

12.2. Import of Binary Files

It's possible to load any file into a variable. This is done with the LoadBinary function. To extract bytes of
the file from the variable you use the get function. Y ou can also get the size of the file with the getSize function.
Hereisan example:

/!l Load the file into the variable 'data’
.var data = LoadBi nary("nmyDataFile")

/] Dunp the data to the nmenory
myData: .fill data.getSize(), data.get(i)

The get function extracts signed bytes as defined by java, which means the byte value $ff gives the number -1.
Thisis not a problem when dumping bytes to memory, however if you want to process the data you might want
an unsigned byte. To get an unsigned byte use the uget function instead. The byte value $ff will then return 255.

When you know the format of the file, you can supply a template string that describes the memory blocks.
Each block is given aname and a start address relative to the start of the file. When you supply atemplate to the
LoadBinary function, the returned value will contain aget and a size function for each memory block:

.var dataTenpl ate = "Xcoor d=0, Ycoor d=$100, BounceDat a=$200"
.var file = LoadBi nary(“noveData”, dataTenpl ate)

Xcoor d: fill file.getXCoordSize(), file.getXCoord(i)
Ycoor d: .fill file.getYCoordSize(), file.getYCoord(i)
BounceData: .fill file.getBounceDataSi ze(), file.getBounceData(i)

Again, file.ugetXCoord(i) will return an unsigned byte.

There is a special template tag named ‘C64FILE’ that is used to load native c64 files. When this is in the
template string, the LoadBinary function will ignore the two first byte of the file, since the first two bytes of a
C64 file are used to tell the loader the start address of the file. Here is an example of how to load and display a
KoalaPaint picturefile:

.const KOALA TEMPLATE = "C64FI LE, Bitnap=$0000, ScreenRam=$1f40, Col or Ram=$2328,
Backgr oundCol or = $2710"
.var picture = LoadBi nary("picture.prg", KOCALA TEMPLATE)

58

Import and Export

*=$0801 "Basi c Progrant
Basi cUpst art ($0810)

*=$0810 " Progrant'

| da #$38

sta $d018

| da #$d8

sta $d016

| da #$3b

sta $d011

| da #0

sta $d020

| da #pi ct ure. get Backgr oundCol or ()

sta $d021

I dx #0

'l oop:

for (var i=0; i<4; i++) {
| da col or Ram+i *$100, x
sta $d800+i *$100, x

}

i nx

bne !l oop-

jmp *

*=$0c00; .fill picture.getScreenRantSi ze(), picture.getScreenRan(i)
*=$1c00; colorRam .fill picture.getCol orRantSi ze(), picture. get Col or Ran(i)
*=3$2000; .fill picture.getBitmapSize(), picture.getBitmap(i)

Notice how easy it is to reallocate the screen and color ram by combining the *= and .fill directives. To avoid
typing in format types too often, Kick Assembler has some build in constants you can use:

Table 12.1. BinaryFile Constants

Binary format constant Blocks Description

BF_C64FILE A C64 file (The two first bytes are
skipped)

BF BITMAP_SINGLECOLOR ScreenRam,Bitmap The Bitmap single color format out-
putted from Timanthes.

BF KOALA Bitmap,ScreenRam,Col orRam,BackgFélesiCahoiK oala Paint

BF _FLI ColorRam,ScreenRam,Bitmap Filesfrom Blackmails FLI editor.

BF_DOODLE ColorRam,Bitmap Files from Doodle

Soif you want to load aFL | picture, just write

.var fliPicture = LoadBi nary(" G eatPicture", BF_FLI)

The formats were chosen so they cover the outputs of Timanthes (NB. Timanthes doesn’t save the background
color in koalaformat, so if you use that you will get an overflow error).

TIP: If you want to know how data is placed in the above formats, just print the constant to the console while
assembling. Example:

‘.print "Koal a format="+BF_KOALA

12.3. Import of SID Files

The script language knowstheformat of SID files. Thismeansthat you can import filesdirectly from the HVSC
(High Voltage Sid Collection) which uses this format. To do this you use the LoadSid function which returns a
value that represents the sidfile.

59

Import and Export

.var nusic = LoadSi d("C:/c64/ HVSC 44-all - of -t heml C64Musi c/ Tel _Jer oen/
Closing_In.sid")

From thisyou can extract data such astheinit address, the play address, info about the music and the song data.

Table 12.2. SIDFileValue Properties

Attribute/Function Description

header Thesid file type (PSID or RSID)

version The header version

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

Speed The speed flags (Consult the Sid format for details)

flags flags (Consult the Sid format for details)

startpage Startpage (Consult the Sid format for details)

pagelength Pagelength (Consult the Sid format for details)

size The datasize in bytes

getData(n) Returns the n'th byte of the module. Use this function
together with the size variable to store the modules bi-
nary datainto the memory.

Here is an example of use:

e e
e e
/1 SI D Pl ayer
e e
e e

.var music = LoadSi d("Ni ghtshift.sid")

Basi cUpstart 2(start)
start:

| da #$00

sta $d020

sta $d021

| dx #0

I dy #0

| da #nusi c. start Song- 1
jsr music.init
sei

| da #<irqgl
sta $0314

| da #>irql
sta $0315

asl $do019

| da #$7b

sta $dcod

| da #$81

sta $d0la

| da #$1b

60

Import and Export

sta $d011

| da #$80

sta $d012

cli

jmp *

L e e
irql:

asl $d019

inc $d020

j sr musi c. pl ay

dec $d020

pl a

tay

pl a

t ax

pl a

rti
L e e

*=nusi c. | ocati on "Misic"

.fill nusic.size, nusic.getData(i)
e e
/1 Print the nmusic info while assenbling
.print ""

.print "SID Data"
.print "-------- "

.print "location=$"+toHexString(nusic.l|ocation)
.print "init=$"+toHexString(nusic.init)

.print "play=$"+t oHexStri ng(nusic. play)

.print "songs="+nusi c. songs

.print "startSong="+nusic. start Song

.print "size=$"+toHexString(nusic.size)

.print "name="+nusi c. nane

.print "author="+mnusi c. aut hor

.print "copyright="+nusic. copyri ght

.print ""

.print "Additional tech data"

Lprint Me--aaooiee e

.print "header="+nusi c. header

.print "header version="+mnusic.version
.print "flags="+toBi naryString(nusic.flags)
.print "speed="+toBi naryString(nusic.speed)
.print "startpage="+nusic. start page

.print "pagel engt h="+nusi c. pagel engt h

Assembling the above code will create amusicplayer for the given sidfileand print theinformationinthemusic
file while assembling:

SI D Dat a

| ocati on=$1000

i ni t=$1d70

pl ay=$1003

songs=1. 0

start Song=1.0

si ze=$d78

nane=Ni ght shi ft

aut hor=Ari Yliaho (Ageni xer)
copyri ght =2001 Scal | op

Addi ti onal tech data

header =PS| D

61

Import and Export

header version=2.0
fl ags=100100
speed=0

st art page=0.0

TIP: If you use thelibdir option to point to your HV SC main directory, you don’t have to write long filenames.
For example:

.var nusic = LoadSi d("C:./c64/ HVSC 44-all -of -t heml C64Musi c/ Tel _Jer oen/
Closing_In.sid")

will be

‘.var musi ¢ = LoadSi d(" Tel _Jeroen/ d osi ng_I n.sid")

12.4. Converting Graphics

Kick Assembler makes it easy to convert graphics from gif and jpg files to the basic C64 formats. A picture
can be loaded into a picture value by the LoadPicture function. The picture value can then be accessed by various
functions depending on which format you want. The following will place a single color logo in a standard 32x8
char matrix charset placed at $2000.

*=$2000
.var logo = LoadPicture("CM__32x8.gif")
.fill $800, |ogo.getSinglecolorByte((i>>3)&1f, (i&7) | (i>>8)<<3)

If you don't like the compact form of the .fill command you can use a for loop instead. The following will
produce the same data:

*=$2000
.var logo = LoadPicture("CM__32x8.gif")
.for (var y=0; y<8; y++)
.for (var x=0; x<32; x++)
.for(var charPosY=0; charPosY<8; char PosY++)
. byt e | ogo. get Si ngl ecol or Byt e(x, char PosY+y* 8)

The LoadPicture can take a color table as the second argument. This is used to decide which bit pattern is
produced by a pixel. In single color mode there are two bit patters (%0 and %1) and multi color mode has four
(%00, %01, %10 and %11). If you don't specify a color table, a default table is created based on the colorsin the
picture. However, normally you wish to control which color is mapped to a bit pattern. The following shows how
to convert a picture to a 16x16 multi color char matrix charset:

*=$2800 “Logo”
.var picture = LoadPicture("Picture_16x16.gif",
Li st ().add($444444, $6c6c6C, $959595, $000000))

.fill $800, picture.getMlticolorByte(i>>7,i&$7f)

The four colors added to the list are the RGB values for the colors that are mapped to each bit pattern.

Finally the picture value contains a getPixel function from which you can get the RGB color of a pixel. This
comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Table 12.3. PictureValue Functions

Attribute/Function Description

width Returns the width of the picturein pixels.
height Returns the height of the picture in pixels.

62

Import and Export

Attribute/Function Description

getPixel(x,y) Returnsthe RGB value of the pixel at position x,y. Both
x andy are givenin pixels.

getSinglecolorByte(x,y) Converts 8 pixels to a single color byte using the color
table. X is given as a byte number (= pixel position/8)
andy isgivenin pixels.

getMulticolorByte(x,y) Converts4 pixelsto amulti color byteusing the color ta-
ble. X isgiven asabyte number (= pixel position/8) and
y is given in pixels. (NB. This function ignores every
second pixel since the C64 multi color format is half the
resolution of the single color.)

12.5. Writing to User Defined Files

With the createFile function you can create/overwrite a file on the disk. You call it with a file name and it
returns avalue that can be used to write data to the file:

.var nmyFile = createFil e("breakpoints.txt")
.eval nyFile.witeln("Hello Wrld")

IMPORTANT! For security reasons, you will have to use the —afo switch on the command line otherwise file
generation will be blocked. Eg “java—jar KickAss.jar source.asm -afo” will do the trick.

File creation is useful for generating extra data for emulators. The following example shows how to generate
afile with breakpoint for VICE:

.var brkFile = createFile("breakpoints.txt")

.macro break() {
.eval brkFile.witeln(“break “ + toHexString(*))
}

*=$0801 “Basic”
Basi cUpstart (start)

*=$1000 " Code"
start:
i nc $d020
br eak()
jmp start

When running VICE with the breakpoint file (use the -moncommands switch), VICE will run until the break
and then exit to the monitor.

Hereisalist of the functions on afile value:

Table 12.4. FileValue Functions

Attribute/Function Description

Attribute/Function Description.
writeln(text) Writesthe ‘text’ to the file and insert aline shift.
writeln() Insert aline shift.

12.6. Exporting Labels to other Sourcefiles

By using the —symbolfile option at the commandline it's possible export all the assembled symbols. Theline

‘j ava —jar KickAss.jar sourcel.asm -synbol file

63

Import and Export

will generate the file sourcel.sym while assembling. Lets say the content of sourcel is:

.fil enanespace sourcel
*=$2000
cl ear Col or:
| da #0
sta $d020
sta $d021
rts

The content of sourcel.sym will be:

. nanmespace sourcel {
.l abel clearColor = $2000
}

It's now possible to refer to the labels of sourcel.asm from another file just by importing the .sym file:

.inmport source “sourcel.synf
j sr sourcel. cl ear Col or

12.7. Exporting Labels to VICE

By using the —vicesymbols option you can export the labelsto a .vsfile that can be read by the VICE emulator.
For example:

‘j ava —j ar Ki ckAss.jar sourcel.asm —-vi cesynbol s

Chapter 13
Modifiers

With modifiers, you can modify assembled bytes before they are stored to the target file. It could be you want
to encrypt, pack or crunch the bytes. Currently, the only way to create a modifier is to implement a java plugin
(See the plugin chapter).

13.1. Modify Directives

Y ou can modify the assembled bytes of alimited block or of the whole sourcefile. To modify the whole source
file use the .filemodify directive at the top of the file. The following modifies the whole file with the modifier
‘MyModifier’ called with the parameter 25.

.filenmodi fy MyMdifier(25)

To modify alimited block you use the .modify directive:

.modi fy MyModifier() {

*=3$8080
nmai n:
inc $d020
dec $d021
jmp main
*=$1000
fill $100, i
}

65

Chapter 14
Special Features

Misc features

14.1. Name and path of the sourcefile
Y ou can get the filename and the path of the current sourcefile with the getPath() and getFilename() functions:

.print "Path : " + getPath()
.print "Filenane : " + getFilenane()

14.2. Basic Upstart Program

To make the assembled machine code run on aC64 or in an emulator, it'suseful toincludealittle basic program
that startsyour code (for example: 10 sys4096). The BasicUpstart macro is standard macro that helpsyou to create
programs like that. The following program shows how it’s used:

*= $0801 "Basic Upstart"
Basi cUpstart (start) /] 10 sys$0810

*= $0810 " Progrant
start: inc $d020

inc $d021

jmp start

TIP: Insert at basic upstart program in the start of your programs and use the —execute option to start Vice. This
will automatically load and execute your program in Vice after successful assembling.

Thereis asecond variation of the basic upstart macro that also takes care of setting up memory blocks:

Basi cUpstart2(start) /] 10 sys$0810
start: inc $d020

inc $d021

jmp start

If you want to seethe script code for the macros, you can look in the autoinclude.asmfilein the KickAssjar file.

14.3. Opcode Constants

When making self modifying code or code that unrolls speed code, you have to know the value of the opcodes
involved. To makethiseasier, al the opcodes have been given their own constant. The constant isfound by writing
the mnemonic in uppercase and appending the addressing mode. For example, the constant for a rts command is
RTSand ‘lda#0’ isLDA_IMM. So, to place an rts command at target you write:

| da #RTS
sta target

Y ou get the size of a mnemonic by using the asmCommandSize command

.var rtsSize = asnComuandSi ze(RTS) [/rtsSize=1
.var | daSizel asmCommandSi ze(LDA_ I M) / /| daSi zel=2
.var | daSize2 asnComandSi ze(LDA _ABS) //| daSi ze2=3

Here are alist of the addressing modes and constant examples:

66

Special Features

Table 14.1. Addressing Modes

Argument Description Example constant Example command
None RTS rts
IMM Immediate LDA_IMM Ida#$30
ZP Zeropage LDA_ZP Ida $30
ZPX Zeropage,x LDA_ZPX Ida $30,x
ZPY Zeropage,y LDX_ZPY Idx $30,y
1ZPX Indirect zeropage,x LDA_1ZPX Ida ($30,x)
1ZPY Indirect zeropage,y LDA _1ZPY Ida ($30),y
ABS Absolute LDA_ABS Ida $1000
ABSX Absolute,x LDA_ABSX Ida $1000,x
ABSY Absolutey LDA_ABSY |da $1000,y
IND Indirect JMP_IND jmp ($1000)
REL Relative BNE_REL bne loop

14.4. Colour Constants

Kick Assembler has build in the C64 colour constants:

Table 14.2. Colour Constants

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

BROWN

LIGHT_RED
DARK_GRAY/DARK_GREY
GRAY/GREY
LIGHT_GREEN
LIGHT_BLUE
LIGHT_GRAY/LIGHT_GREY

<
o
c
(0]

Ol (N B~ WIN| PO

=
o

-
[N

[ERY
N

[
w

[ERN
N

=
ol

Example of use:

| da #BLACK
sta $d020
| da #VWH TE
sta $d021

67

Special Features

14.5. Making 3D Calculations

To makeit easy to to make 3D Calculations, Kick Assembler supports vector and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y and z as
argument:

.var vl
.var v2

Vector (1, 2, 3)
Vector (0, 0, 2)

Y ou can access the coordinates of the vector by its get functions and do the most common vector operations
by the assigned functions. Here are some examples:

.var v1PlusV2 = vi1+v2
.print "V1 scaled by 10 is " + (v1*10)
.var dot Product = vi*v2

Hereisalist of vector functions and operators:

Table 14.3. Vector Value Functions

Function/Operator Example Description

get(n) Returns the n'th coordinate (x=0,
y=1, z=2).

getX() Returns the x coordinate.

getY () Returnsthey coordinate.

getZ() Returns the z coordinate.

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors.

- Vector(1,2,3)-Vector(2,3,4) Returnstheresult of asubtraction be-
tween the two vectors.

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a num-
ber.

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product.

/ Vector(1,2,3)/2 Divides each coordinate by a factor
and returns the result.

X(v) Vector(0,1,0).X (Vector(1,0,0)) Returns the cross product between
two vectors.

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the other
constructor functions described later. Y ou access the entries of the matrix by using its get and set functions:

.var matrix = Matrix() /Il Creates an identity matrix
.eval matrix.set(2,3,100)

.print "Matrix.get(2,3)=" + matrix.get(2,3)

.print "The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be to move
the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity matrix, which is one
that leaves the coordinates unchanged. By using the set function you can construct any matrix you like. However,
Kick Assembler has constructor functions that create the most common transformation matrixes:

Table 14.4. Matrix Value Constructors

Function Description
Matrix() Creates an identity matrix.

68

Special Features

Function Description

RotationMatrix(ax,aY ,aZ) Creates a rotation matrix where aX, a¥Y and aZ are the
anglesrotated around the x, y and z axis. The angles are
giveninradians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled
by sX, the y-coordinate by sY and the z-coordinate by
sZ.

MoveMatrix(mX,mY,mZ) Creates amove matrix that moves mX along the x-axis,
mY along the y-axis and mZ along the z-axis.

PerspectiveMatrix(zProj) Creates a perspective projection where the eye-point is

placed in (0,0,0) and coordinates are projected on the
XY -plane where z=zProj.

You can multiply the matrixes and thereby combine their transformations. The transformation is read from
right to left, so if you want to move the space 10 along the x axis and then rotate it 45 degrees around the z-
axis, you write:

.var m= RotationMtrix(0, 0, toRadi ans(45))*MveMatri x(10, 0, 0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = nrVector(10, 0, 0)
.print "Transformed v=" + v

The functions defined on matrixes are the following:

Table 14.5. Matrix Value Functions

Function/Oper ator Example Description

get(n,m) Getsthe value at n,m.

set(n,m,value) Setsthevalue at nm.

Vector Matrix() Vector(1,2,3) Return the product of the matrix and
avector.

Matrix Matrix() Matrix() Returns the product of two matrixes.

Hereisalittle programtoillustrate how matrixes can be used. It pre cal cul ates an animation of acubethat rotates
around the x, y and z-axis and is projected on the plane where z=2.5. The dataiis placed at the label * cubeCoords':

.var Cube = List().add(
Vector(1,1,1), Vector(1,1,-1), Vector(1,-1,1), Vector(1,-1,-1),
Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

.macro Precal cObj ect (obj ect, aninLength, nrOf Xrot, nrOf Yrot, nrOfZrot) ({

/! Rotate the coordi nate and pl ace the coordi nates of each franms in a |list
.var frames = List()
.for(var frameNr=0; franmeNr<aninlength;frameNr++) {

[/l Set up the transform matrix

.var aX = toRadi ans(frameNr*360*nr Cf Xr ot/ ani mLengt h)

.var aY = toRadi ans(frameNr*360*nr Cf Yr ot/ ani mLengt h)

69

Special Features

.var aZ = toRadi ans(frameNr*360*nr Cf Zr ot / ani nLengt h)
.var zp = 2.5 // z-coordinate for the projection plane
.var m= Scal emvatrix(120, 120, 0) *

Per specti veMatri x(zp)*

MoveMat ri x(0, O, zp+5) *

Rot ati onMat ri x(aX, aY, az)

/1 Transformthe coordinates

.var coords = List()

.for (var i=0; i<object.size(); i++) {
.eval coords. add(nrobject.get(i))

}

.eval franes. add(coords)

}

/] Dunp the list to the menory
.for (var coordNr=0; coordNr<object.size(); coordNr++) {
.for (var xy=0;xy<2; xy++) {
.fill animength, $80+round(franes.get(i).get(coordNr).get(xy))

}

}
}
e e
/1l The vector data
e e
.align $100
cubeCoords: Precal cObj ect (Cube, 256, 2,-1, 1)
e e

70

Chapter 15
Assemble Information

Kick Assembler 4, and later versions, exposes information of build in features and of the assembled source
files. Thisisintended for authors of editorswho want to provide extra support for Kick Assembler such asrealtime
error and syntax feedback and help text for build in directives and libraries. These features are under development
and the interface might change. If you plan to use this get in touch with the author so we can coordinate our efforts.

15.1. The Asminfo option

To get assemble info back from Kick Assembler, use the -asminfo option:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all

When executing the above statement, output is written to the file "asminfo.txt", but you can specify the file
by the -asminfofile option:

‘java -jar KickAss.jar mysource.asm-asmnfo all -asm nfofile nyAsm nfo. t xt

The content of the file will have different sections dependent on what info you have requested. The second
parameter describeswhichinfoisreturned, sointheabove exampleall possibleinfoisreturned. Theoutput divided
into sections, with different types of information, here is an example:

[libraries]

Mat h; const ant ; Pl

Mat h; const ant ; E

Mat h; f uncti on; abs; 1
Mat h; f uncti on; acos; 1

[directives]
.text;.text "hello"; Dunmps text bytes to nmenory.
. by; . by $01, $02, $03; An alias for '.byte'.

[files]

0; Ki ckAss. jar:/incl ude/ aut oi ncl ude. asm
1; nySour ce. asm

[synt ax]

synbol Ref er ence; 38, 8, 38,17, 0

synbol Ref er ence; 41, 20, 41, 26, 0
functionCall ; 41, 8, 41, 18,0

synbol Ref er ence; 56, 8, 56, 17, 0

[errors]

The details of the sections will be explained later.

There are two categories of asminfo: Predefined info, which contains information about the features that is
build into the assembler like directives and libraries. The other main category is source specific informations, like
the syntax of the source or errors in the source. Y ou can turn on one or several categories or sections:

Thiswill export all predefined assemble info sections:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all Predefined

And thiswill export all predefined assemble info sections and any errors:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all Predefined|errors

Noticethe'|' isused to give several selections - you can add as many as you want. Thisisthe available options:

71

Assemble Information

Table 15.1. Asminfo

Name Category Description

al meta Exportsal info, both predefined and
source specific

allPredefined meta All predefined infos

alSourceSpecific meta All source specific infos

libraries predefined The defined libraries (Functions and
constants)

directives predefined The defined directives

preprocessorDirectives predefined The defined preprocessor directives

files sourceSpecific Thefilesinvolved in the assembling

syntax sourceSpecific Syntax info of the given files

errors sourceSpecific Errors of the assembling

When the category says 'meta’ the option is used to select several of the sections. When the category is not
'meta’ the option refersto a specific section. The details of the sectionsis given in later chapters.

15.2. Realtime feedback from the assembler

For writers of editors Kick Assembler has some special features which enables you to get info about the source
filewhilethe user isediting it. Thisisdone by calling Kick Assembler in strategic places|like, when the user hasn't
typed anything for a given period of time.

First, the content of the one or several source files might not be saved. To get by this, save the content to a
temporary file and use the replacefile option to substitute the content of the original file:

java -jar KickAss.jar mysource.asm -replacefile c:\ka\mysource.asmc:\tnp
\'t npSour ce. asm

This replaces the content of the first file with the second. It doesn't matter if the fileisthe main file or included
by another filer, and your can have as many replaceFile options as you want.

Secondly, you don't want Kick Assembler to do a complete assembling each time you call it. It might take
too much time to assemble and you don't want the assembler to overwrite output. To take care of this, use the -
noeval option.

‘j ava -jar KickAss.jar mysource.asm -noeval

This make Kick Assembler parse the source file and do an initial pass, no evaluation will be done. This will
detect syntax errors and return syntax information.

15.3. The Asminfo file format

The assembly info filesis divided into sections. If the first char of alineis ' it marks a new section, and the
name of the section is written between square brackets. Each line consist of one or more semicolon separated
fields. Noticethat in special cases, thelast field might contain asemicolonitself (Thiswill be noted in theinvolved
sections). So the basic file format looks like this:

[sectionl]
fieldl;field2;field3
fieldl;field2;field3
fieldl;field2;field3
[secti on2]
fieldl;field2
fieldl;field2
fieldl;field2

72

Assemble Information

As specia type of field, which is used in several sectionsis a 'source range' which describes a range of chars
inasourcefile. It consist of 5 integers:

‘startl ine, startposition, endline, endposition, fileindex

The positions is the positions in a given line. The file index tell which file it isand is an index pointing to an
entry in the files section. An example of a source rangeis:

‘38,8,38,17,1

15.4. The sections

Here, the details of the different sectionsin the asminfo file is explained.

15.4.1. Libraries section

The format of the libraries section are:

|'i brarynane; entrytype; typedat a

There are two entry types: ‘function’' and ‘constant’. The type data depends on the entry type, and is either:

|'i brarynane; const ant ; const ant nanme
I'i brarynane; functi on; functi onnanme; nunber & Ar gunent s

Examples:

[l'ibraries]

Mat h; const ant ; Pl

Mat h; const ant ; E

Mat h; functi on; abs; 1
Mat h; functi on; acos; 1

15.4.2. Directives section

The format of the directives sectionis:

directive; exanpl e; descri ption

Example:

[directives]
.text;.text "hello"; Dunps text bytes to nenory.

15.4.3. Preprocessor directives section

The format of the preprocessor directives sectionis:

directive; exanpl e; descri pti on

Example:

[ppdirectives]
#def i ne; #def i ne DEBUG, Defi nes a preprocessor synbol .

15.4.4. Files section
Thefilelist section isalist of the involved files. The fields are:

73

Assemble Information

i ndex; fil epath

Important: The file path might contain semicolons!
Anexampleof alistis:

[files]
0; Ki ckAss. jar:/incl ude/ aut oi ncl ude. asm
1;testl. asm

Noticethefirst entry startswith KickAss.jar. Thismeansthat itsafileincluded from insidethe KickAssjar file.

15.4.5. Syntax section

The syntax section has the format:

t ype; sour cer ange

Example:

[synt ax]
oper at or; 21, 20, 21, 20, 0

Note: Itsthe plan to add more fields here, like where athe label is defined if its alabel reference, etc.

15.4.6. Errors section

The errors section has the format:

| evel ; sour cer ange; nessage

Example:

[errors]
Error;41,2,41,7,1; Unknown preprocessor directive #defin

74

Chapter 16
Testing

Kick Assembler has .assert directives that are useful for testing. They were made to make it easy to test the
assembler itself, but you can use them for testing your own pseudo-commands, macros, functions. When assertions
are used, the assembler will automatically count the number of assertions and the number of failed assertions and
display these when the assembling has finished.

16.1. Asserting expressions

With the assert directive you can test the value of expressions. It takes three arguments: a description, an
expression, and an expected result.

.assert "2+5*10/2", 2+5*10/2, 27
.assert "2+2", 2+2, 5
.assert "Vector(1,2,3)+Vector(1,1,1)", Vector(1,2,3)+Vector(1,1,1), Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the expected
result. If these don’'t match an error message is appended:

2+5*10/ 2=27.0 (27.0)
2+2=4.0 (5.0) — ERROR | N ASSERTI ON! !'!
Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

16.2. Asserting errors in expressions

To make sure that an expression gives an error when the user gives the wrong parameters to a function, use
the .asserterror directive:

.asserterror "Testl" , 20/10
.asserterror "Test2" , 20/false

In the above example test1 will fail sinceits perfectly legal to divide 20 by 10. Test2 will produce the expected
error so this assertion is ok. The above will give the following output:

Testl — ERROR | N ASSERTI ON!
Test2 — OK. | Can't get a nuneric representation froma val ue of type bool ean

16.3. Asserting code

The assert directive has a second form which makes it possible to compare pieces of assembled code:

.assert "Test2", { lda $1000 }, {ldx $1000}

.assert "Test", {
.for (var i=0; i<4; i++)

sta $0400+i
b A
sta $0400
sta $0401
sta $0402
sta $0403
}

The assert directive will give an ok or failed message and the assembled result as output. The output of the
above exampleis asfollows:

75

Testing

Test1l — FAILED! | 2000: ad, 00,10 -- 2000: ae, 00, 10
Test2 — OK. | 2000: 8d, 00, 04, 8d, 01, 04, 8d, 02, 04, 8d, 03, 04

16.4. Asserting errors in code

Like the assert directive the asserterror directive also has a form that can assert code:

‘. asserterror “Test” , { lda # This nust fail”}
Output:
Test — OK. | The value of a Command Argunent Value nust be an integer. Can’t get an

i nteger froma value of type ‘string’

76

Chapter 17
3rd Party Java plugins

It's possible to write you own plugins for Kick Assembler. Currently the following types of plugins are sup-
ported:

* Macro Plugins - Implements macros

Modify Plugins — Implements modifiers

» SegmentModifier Plugins — Implements segment modifiers

Archive Plugins — Used to group multiple pluginsin one unit

AutolncludeFile Plugins — Used to include a source codefile in an archive

» DiskWriter Plugins —Used to write d64 image disk writers.

17.1. The Test Project

Before going any further | suggest you download the plugin development test eclipse project from the Kick
Assembler website.

To useit do the following:

1. Create an Eclipse workspace.

2. 'Import->Existing Projects into workspace->Select archive file' and select the downloaded project file.
3. Replacethe KickAss,jar filein the jars folder with the newest version, if necessary.

You are now ready to start. In the src folder you can see examples of how the plugins are made. The files in
PluginTest shows how to use them and in the launch folder is launch files for running the examples (Rightclick-
>Run As).

17.2. Registering your Plugins

To work with plugins you should do two things. When assembling you should make your compiled java class
visible from the java classpath. If you are using eclipse to run your Kick Assembler, like in the example project,
you don’t have to worry about this. If you are using the command line you will have to set either the classpath
environment variable or use the classpath option of the java command.

Secondly you should tell Kick Assembler about your plugin. There are two ways to do this. If your pluginis
only used in one of your projects, you should use the .plugin directive. Eg:

.plugin "test. pl ugi ns. macr os. M\yMacr o"

If the plugin should be available every time you use Kick Assembler, you place the class namein alinein the
file ‘KickAss.plugin’ which should be placed in the same locations as the KickAss,jar. Using / in the start of the
line makes it a comment. Example of aKickAss.plugin file:

/1 My macro plugins

test. pl ugi ns. macr os. MyMacr ol
test. pl ugi ns. macr os. MyMacr 02
test. pl ugi ns. macr os. MyMacr 03

17.3. A quick Example (Macros)

First, let's see aquick example of an implemented plugin. To implement a macro plugin you must create ajava
class that implements the IMacro interface:

77

3rd Party Java plugins

public interface I Macro extends |Plugin {
MacroDefinition getDefinition();
byte[] execute(lVal ue[] paraneters, |Engine engine);

The interface has two methods, one that gets parameters that defines the macro, and one executes it. Thisis
the basic structure of nearly all the plugins. The MacroDefinition classisreally smple. It consist of a getter and
setters for the defining properties. Since the only defining property of amacro isits name, it looks like this:

public class MacroDefinition {
/'l Properties
private String nane;

Il Cetters/setters for properties, in this case getName() and set Nanme(nane)

A simple example of amacro implementation that prints‘Hello World from MyMacro!” and returns zero bytes
looks like this:

package test. pl ugins. macr os;

i mport kickass. plugins.interf.general .| Engine;

i mport kickass. plugins.interf.general .| Val ue;

i mport kickass. plugins.interf. mcro. | Mcro;

i mport kickass. plugins.interf. mcro. MacroDefinition;

public class M/Macro i nplenments | Macro {
MacroDefiniti on definition;

public MyMacro() {
definition = new MacroDefinition();
definition.set Nane(" MyMacro");

}

@verride
public MacroDefinition getDefinition() {
return definition;

}
@verri de

public byte[] execute(lValue[] paraneters, |Engine engine) {
engine.print("Hello world from nymacro!");
return new byte[0];

Y ou execute it as anormal macro:

.plugin "test. pl ugi ns. macr os. M\yMacr o"

MyMacr o()

The ‘arguments parameter is the arguments parsed to the macro. You can read about these in the 'general
communication classes section. The same goes for the ‘engine’ parameter which is used to do additional commu-
nication with the Kick Assembler engine.

17.4. General Communication interfaces

In this section the genera interfaces that are used in several plugins are explained. They are al placed in
the package 'kickass.plugins.interf.general’. The most important ones are IEngine and |Value. Give them a quick
review and return to this chapter when you need info for implementing a particular plugin.

78

3rd Party Java plugins

17.4.1. The IEngine Interface

ThelEngineinterface isthe central object when you want to communicate with Kick Assembler. With thisyou
can report errors, print text, create an output stream for outputting afile, etc.

Table 17.1. IEngine I nterface

Method Description

void addError(String message, | SourceRangerange);

Adds an error to the engines error list, but continues
execution. With this method you can report several er-
rors from your plugin.

byte charToByte(char c);

Converts a char to a petscii byte (upper case).

IMemoryBlock createMemoryBlock(String name,
int startAddr, byte[] bytes);

Createsamemory block. Used asresult in some plug
ins.

void error(String message);

Prints an error message and stops execution. Works
like the .error directive. Important! This method will
throw an AsmException which you haveto passthrough
any try-catch block used in your code.

void error(String message, | SourceRange);

Like error(string message), buy with a specified po-
sition in the code (SourceRange)

File getCurrentDirectory();

Gets the current directory.

File getFile(String filename);

Opens afile with the given filename. The assembler
will look for the file as it would look for a source code
file. If itisn't present in the current directory, it will look
in the library directories. It will return null if the file
can't be found.

OutputStream openOutputStream(String name)

throws Exception;

Use this to create output from the assembler (like a
disk file for a disk writer)

void print(String message);

Prints a message to the screen. Works like the .print
directive.

void printNow(String message);

Prints a message to the screen. Workslike the .print-
now directive.

byte[] stringToBytes(String str);

Converts a string to petscii bytes (Upper case)

17.4.2. The IValue Interface

Objects that implementsthe interface | Value represents values from Kick Assembler like numbers, strings and
booleans. For instance, the arguments given to amacro are given as 1V alue objects. The [Vaue interface contains
the following methods to extract information from the value:

Table 17.2. IValueInterface

Method Description

int getint(); Gets an integer from the value if possible, otherwise
it will give an error message.

Double getDoubl&(); Getsadouble from the valueif possible, otherwiseit
will give an error message.

String getString(); Gets a string from the value if possible, otherwise it

will give an error message.

Boolean getBool ean();

Gets a Boolean from the value if possible, otherwise

it will give an error message.

79

3rd Party Java plugins

Method Description

List<lValue> getList(); Gets at list of values if possible, otherwise it will
give an error message. Thelist implementssize(), get(i),
iSEmpty() and iterator().

Boolean hasl ntRepresentation(); Tellsif you can get an integer from the value. Every
number value can produce an integer. 3.2 will produce
3).

boolean hasDoubl eRepresentation(); Tellsif you can get a double from the value.

boolean hasStringRepresentation(); Tellsif you can get a string from the value.

boolean hasBooleanRepresentation(); Tellsif you can get a boolean from the value.

boolean hasListRepresentation(); Tellsif you can get alist from the value.

17.4.3. The ISourceRange Interface

The | SourceRange interface represents a position in the source code. An example could be line 17 column 3 to
line 17 column 10. These are given to plugins to indicate where it is called from or where certain parameters are
defined. The plugin can give them back when reporting errors to indicate what code coursed the error.

Seen from the plugin, the interface is empty:

public interface | SourceRange {

}

17.4.4. The IMemoryBlock Interface

ThelMemoryBlock interface represents amemory block. A block consist of astart address and some byte data.
Here are an example of two memory blocks generated by the assembler:

*=$1000 "Bl ock 1"
.byte 1,2,3

*=$2000 "Bl ock 2"
| da #1

sta $d020

rts

It can either be passed as argument to the plugin or created by the plugin and returned as a result. Use the
‘createMemoryBlock’ in the | Engine interface to create new memory blocks.

Table 17.3. IMemoryBlock Interface

Method Description

int getStartAddress() The start address of the memory block.
byte[] getBytes() The assembled bytes of the memory block.
String getName(); The name of the memory block.

17.4.5. The IParameterMap Interface

The IParametersMap interface represent a collection of name-value pairs. The nameisastring and the valueis
of type IValue. These source code parameters are usually defined in square brackets like this:

[nane="Kevi n", age=27, hacker=true]

The main methods defined on parameter maps are exists(), getVaue(), getSourceRange() and getParameter-
Names(). In addition there are some convenience methods for easy retrieval of values of specific types:

80

3rd Party Java plugins

Table 17.4. | Parameter M ap I nterface

Method Description

boolean exist(String paramName) Tellsif aparameter of the given name exists.

boolean getBool Vaue(String paramName, boolean de- | Returns the boolean parameter of the given name. The
faultValue) default is returned in case of an undefined value.

<T extends Enum<?>> T getEnumValue(Class<T>|Returnsthe enum parameter of the given name. The de-
enumeration, String name, T defaultLitteral) fault isreturned in case of an undefined value.

int getIntVaue(String paramName, int defaultValue) | Returnstheint parameter of the given name. The default
isreturned in case of an undefined value.

Collection<String> getParameterNames() Returns the names of the defined parameters.

| SourceRange getSourceRange(String paramName) Returns the position at which this parameter is defined
in the source code.

String getStringValue(String paramName, String de- | Returns the string parameter of the given name. The de-

faultValue) fault isreturned in case of an undefined value.

IValue getValue(String paramName) Returnsthe value of the parameter with the given name.

17.5. The Plugins

In this section the different plugins are described. Most of them follow a simple pattern: They contain two
methods, one for returning a definition for the plugin (name, required parameters, etc.) and one for executing it:

interface XYZPlugin extends |Plugin {
XYZDef i nition getDefinition();
voi d execute(...);

The XY ZDefinition class simply contains getters and setters for the definition of the plugin, so your get-
Definition() method should simply return an XY ZDefinition where you have set the fields using the setters
(setName("MyPlugin") etc). Many of the definitions only contains a name, but having a definition class makes it
easier to extend without breaking backwards compatibility.

You will find that al plugin interfaces extends IPlugin. IPlugin is empty and simply away of ensuring type
safety if you want an object you are sureis aplugin.

17.5.1. Macro Plugins

Theinterface for amacro looks like this:

public interface | Macro extends |Plugin {
Macr oDefi nition getDefinition();
byte[] execute(lValue[] paraneters, |Engine engine);

}

public class MacroDefinition {
/| Properties
private String nane;

/] Getters/setters for properties, in this case getNane() and set Nane(nane)

Macro plugins are described previously in the 'Quick Example' section, so look there for a complete example.

81

3rd Party Java plugins

17.5.2. Modifier Plugins

With modifiers you modify the outputted bytes from a section of the code. E.g the following will send the
memory block starting at $8080 the the modifier called ‘MyModifier' and the returned bytes will be used instead:

.modi fy MyModifier(27) {
*=$8080

mai n:
inc $d020
jmp main

Y ou implement amodifier by implementing the following interface. The 'name' in the definition isthe modifier
name ('"MyModifier' in the above example.):

public interface | Modifier extends IPlugin {
Modi fierDefinition getDefinition();
byte[] execute(List<IMnoryBl ock> menoryBl ocks, |Value[] paraneters, |Engine
engi ne) ;

}

public class MdifierDefinition {
private String nane;

/| Getters and setters

Also see the chapter on modifiers.

17.5.3. SegmentModifier plugins

With segment modifiers you can modify the memory block of asegment beforeit is passed on to its destination.
For instance you could implement a packer plugin and have afile packed before it is saved with the command:

.file [name="PackedDat a. prg", segnments="Data", nodify="M/Packer", _start=$2000]

A segment modifier is created by implementing a class thats realises the | SegmentM odifier plugin:

public interface |Segnment Modifier extends |IPlugin {
Segnent Modi fi erDefinition getDefinition();
Li st <I Menor yBl ock> execut e(Li st <lI Menor yBl ock> nenor yBl ocks, | Paranet er Map
par anet ers, | Engi ne engi ne);

}

public class Segnent ModifierDefinition {
private String nane;
private Set<String> all Paraneters;
private Set<String> nonQpti onal Paraneters;

/1 getters and setters

The allParameters set defines the possible parameters for the modifier. Asaconvention you should prefix them
with _ like'_start' in the above example. Thisway the names won't collide with future segment parameter names
and you can easily tell which parameters belong to the modifier.

See the 'segments’ chapter for more about Segment Modifiers and the example project of how to implement.

17.5.4. DiskWriter Plugins

With disk writersyou can write disksin aformat you decide. Before reading further, read about the the standard
disk writer to see what they are able to do. To create awriter you implement a class of the interface | DiskWriter:

82

3rd Party Java plugins

public interface I D skWiter extends |Plugin {
Di skWiterDefinition getDefinition();
voi d execut e(| Di skData di sk, |Engi ne engi ne);

}

public class DiskWiterDefinition {
private String nane;
private Set<String> all D skParaneters;
private Set<String> nonOpti onal Di skPar anet ers;
private Set<String> allFil eParaneters;
private Set<String> nonOpti onal Fi |l eParanet ers;

Recall the format of the .disk directive to understand the definition properties:

.di sk WRI TERNAME [...DI SK PARAVETERS. .] {
[..FILEL PARAVETERS..],
[..FILE2 PARAVETERS..],

[..FILE3 PARAVETERS..],

When WRITERNAM E matchesthe name given in the definition the writer is called. Then we have two kinds of
parameters: disk and file parameters. For each of theseisaset of al possible parameters and a set of non-optional
parameters. If a parameter is give that is not included in the allParameters set Kick Assembler will generate an
error. The same will happen if anon optional parameter is missing.

The execute method has parameters of two new interfaces:

public interface |DiskData {
| Par anet er Map get Paraneters();
Li st <I Di skFi | eDat a> get Fi |l es();

}

public interface |DiskFileData {
| Par anet er Map get Paraneters();
Li st <I Menor yBl ock> get Menor yBl ocks() ;

These represent the given parameters and provides the values and the bytes which should be stored in each file.

When creating the output file, use the | Engine object to open an output stream for storing the bytes. For details,
refer to the example project.

17.5.5. Archive Plugins

You can collect more plugins in one archive. This makes it possible to register them with only one plugin
directive. To create an archive you implement a class of the | Archive interface:

public interface | Archive extends |Plugin {
publ i ¢ List<lPlugin> getPl ugi nCbj ects();
}

An implementation could look like this;

public class M/Archive inplenents |Archive{
@verride
publ i c List<Qbject> getPlugi nObjects() {
Li st<hject> list = new ArraylLi st <oj ect>();
l'ist.add(new MyMacro());
l'ist.add(new MyModi fyer());
return list;

83

3rd Party Java plugins

The following plugin directive will then register both MyMacro and MyModifyer.

‘ .plugin "test.plugins. archives. M Archi ve"

17.5.6. AutoincludeFile Plugins

AutolncludeFile plugins are used to include source code files in archives. It could be that you want to bundle
a source file containing a depack macro together with a segment modifier that packs a segment.

AutolncludeFile plugins have an interfacelike all other plugins, but in 99% of all casesyou can usethe standard
implementation included in the KickAssembler jar. Suppose you have a source file (MyAutolnclude.asm) with a
macro you want to auto include when importing the archive:

/1 FILE: MyAut ol ncl ude. asm
.macro Set Col or(color) {

| da #col or

sta $d020

Then you put MyAutolnclude.asm in your jar-file in the package 'include’ and add an object of the class Au-
tolncludeFileto your archive. Y ou archive could look like this:

public class M/Archive inplenents |Archive{

@verride
publ i c List<lPlugin> getPl ugi nCbj ects() {
ArraylLi st <l Pl ugi n> plugins = new ArrayLi st<>();
pl ugi ns. add(new SonePl ugi n1());
pl ugi ns. add(new SonePl ugi n2());
pl ugi ns. add(new Aut ol ncl udeFi | e("M/Arcive.jar", getd ass(),"/incl ude/
MyAut ol ncl ude. asni')) ;
return plugins;
}

In the Autol ncludeFile-constructor you give:
1. Thejar-name - for use when printing error messages
2. A random 'class-object from the jar - thisis used to open the resource.
3. A path to the resource - the placement inside the jar.

Thefilewill now be compiled with the rest of the source if the archive isimported.
For completeness, here is the | Autol ncludeFile-interface, but as mentioned, you probably wont need it.

public interface | AutolncludeFile extends |IPlugin {
Aut ol ncl udeFi | eDefinition getDefinition();
| nput St ream openStrean() ;

}

public class Autol ncludeFil eDefinition {
private String fil ePat h;
private String jar Nane;

Appendix A. Quick Reference

A.1l. Command Line Options

Table A.1. Command Line Options

Option
-afo

Example
-afo

Description

Allows file output outside the output
dir.

Allow overlapping memory blocks.
With this option, overlapping memo-
ry blocks will produce awarning in-
stead of an error.

-asminfo

-asminfo al

Turn on exporting of assembleinfo

-asminfofile

-asminfofile myAsminfo.txt

Tells where to output the asminfo
file.

-binfile

-binfile

Setsthe output to beabinfileinstead
of aprg file. The difference between
abinand aprgfileisthat the binfile
doesn’t contain the two start address
bytes.

-bytedump

-bytebump

Dumps the assembled bytes in the
file ByteDump.txt together with the
code that generated them.

-bytedumpfile

-bytebumpfile myfile.txt

Same as -bytedump but with an argu-
ment specifying the name of thefile

-cfdfile

-cfdfile"../../MyConfig.Cfg"

Use additional configuration file
(likeKickAss.cfg). Supply thefileas
an absolute path, or a path relative
to the source file. You can have as
many additional config files as you
want.

-debug

-debug

For development use. Adds addition-
al debug info, like stacktraces, to the
output.

-debugdump

-debugdump

Dumps an infofile for c64 debugger
that maps assembled bytes to loca
tions in the sourcecode.

-define

-define DEBUG

Defines a preprocessor symbol.

-dtv

-dtv

Enables DTV opcodes.

-excludeillegal

-excludeillegal

Exclude theillegal opcodes from the
instruction set

-execute

-execute "x64 +sound"”

Executeagiven program with theas-
sembled file as argument. You can
use this to start a C64 emulator with
the assembled program if the assem-
bling is successful.

-executelog

-executelog execlog.txt

If set, this generates a logfile for the
output of the program executed using
the '-execute' option.

85

Quick Reference

Option Example Description

-fillbyte -fillbyte 255 Setsthe byte used tofill the space be-
tween memoryblocksin the prg file.

-libdir -libdir ../stdLib Defines a library path where the as-
sembler will look when it tries to
open external files.

-log -log logfile.txt Prints the output of the assembler to
alodfile.

-maxaddr -maxaddr 8191 Sets the upper limit for the memory,
default is 65535. Setting a negative
value means unlimited memory.

-mbfiles -mbfiles Onefilewill be saved for each mem-
ory block instead of one big file.

-noeval -noevd Parse the sourcecode but exit before
evaluation.

-0 -0 dots.prg Setsthe output file. Default isthein-
put filename with a‘.prg’ as suffix.

-odir -odir out Sets the output dir. Outputfiles will
beoutput inthisdir (or relativetothis
dir)

-pseudoc3x -pseudoc3x Enables semicolon between pseudo-
command arguments.

-replacefile -replacefile c:\source.asm c: | Replaces a given sourcefile with an-

\replacement.asm other everytimeit'sreferred.

-showmem -showmem Show a memory map after assem-
bling.

-symbolfile -symbolfile Genrates a .sym file with the re-
solved symboals. Thefile can be used
in other sources with the .import
source directive.

-symbolfiledir -symbolfiledir sources/symbolfiles |Specifies the folder in which the
symbolfile is written. If noneis giv-
en, its written next to the sourcefile.

-time -time Displays the assemble time.

-vicesymbols -vicesymbols Generates alabdl file for VICE.

-warningsoff -warningsoff Turns off warning messages.

‘name= :Xx=34 :version=beta2 :path="c:/C|The .’ notation denotes string vari-

64/"

ables passed to the script. They
can be accessed by using the ‘cmd-
LineVars hashtable which is avail-
able from the script.

A.2. Preprocessor Directives

Table A.2. Preprocessor directives

Preprocessor Directives Example Description
#define #define DEBUG Defines a preprocessor symbol.
#elif #elif TEST The combination of an #else and an

#if preprocessor directive.

86

Quick Reference

Preprocessor Directives Example Description

#else #else Used after an #if to start an el se block
which is executed if the condition is
false.

#endif #endif Marks the end of an #if/#else block.

#if #f IDEBUG Discardsthe sourcecode after the #if-
directive if the condition isfalse.

#import #import "file2.asm" Imports another sourcefile.

#importif #importif IDEBUG "file2.asm" Imports another sourcefileif the giv-

en expression is evaluated to true.

#importonce

#importonce

Make the assembler skip the current
fileif it has already been imported.

#undef

#undef DEBUG

Removes the definition of a pre-
processor symbol.

A.3. Mnemonics

A.3.1. Standard 6502 Mnemonics

The standard 6502 instructions are as follows.

Table A.3. Standard 6502 M nemonics

imm

$69

$65

$75 $61 $71

$7d $79

$29

$25

$35 $21 [$31

$3d [$39

$06

$16

$le

bcc

$90

bcs

$0

beq

$f0

bit

$24

$2c

bmi

$30

bne

$d0

bpl

$10

brk $00

bvc

$50

bvs

$70

clc $18

cld $d8

cli $58

clv $b8

cmp

$c9

$d5 $c1 |$dl

$dd |$d9

cpx

cpy

$c0

dec

ggeg

$d6

dex $ca

87

Quick Reference

inx $e8

iny $c8

jmp $4c $6¢
jsr $20

Ida $a9 |$ab |05 $al |$bl |$ad $bd |$b9
Idx $a2 $ab $b6 $ae $be
Idy $a0 ($4 |$b4 $ac $bc

Isr $a $46 $56 $e |$5e

nop |$ea

ora $09 $05 $15 $01 $11 $0d $1d $19
pha |$48

php [$08

pla $68

plp $28

rol $2a $26 |$36 $2e [$3e

ror $6a $66 $76 $6e |$7e

rti $40

rts $60

shc $e9 |$e5 |$5 $el |$f1 $ed $fd $f9
sec $38

sed $8

sel $78

sta $85 |$95 $81 |$91 |$8d |$9d |$99
stx $86 $96 $8e

sty $84 (394 $8c

tax $aa

tay $a8

tsx $ha

txa $8a

txs $9a

tya $98

A.3.2. lllegal 6502 Mnemonics

Theillegal instruction set contains the standard 6502 mnemonics plus the below modifications. This is the
default instruction set for Kick Assembler. You get it by writing '.cpu _6502'

Table A.4. Illegal 6502 M nemonics

cmd

noarg

imm

zp

ZpXx

zpy

88

Quick Reference

anc2 $2b

arr $6b

axs $cb

dcp $c7 |$d7 $c3 |$d3 | cf $af $db
isc $e7 |7 $e3 |$f3 Pef $ff $b
las $bb
lax $ab %7 $b7 |$a3 |$b3 | Fef $bf
nop [$ea |$80 (%04 |$14 $0c $ic

rla $27 | $37 $23 |$33 |$2f $3f $3b
rra $67 $77 $63 $73 $of $7f $7b
sax $87 $97 |$83 $8f

shc2 $eb

shx $9%e
shy $9c

do $07 $17 $03 $13 $Of $1f $1b
sre $47 |$57 $43 |$53 |$4f $5f $5b
tas $9b
Xaa $8b

A.3.3. DTV

The DTV instruction set contains the standard+illegal 6502 mnemonics plus the below modifications. Y ou get
it by writing '.cpu dtv'

Table A.5. DTV Mnemonics

cmd | noarg imm zp Zpx

bra $12
sac $32

Sir $42

A.3.4. 65c02 Mnemonics

The 65c02 instruction set contains the standard 6502 mnemonics plus the below modifications. Notice the 3
extra addressing modes. Y ou get it by writing '.cpu _65c02'

Table A.6. 65c02 M nemonics

cmd noargimm |zp Zpx zpy izx |izy abs |abx |aby i i zprel indx
adc $69 |$65 |$75 $61 ($71 |$6d |$7d |$79 $72

and $29 ($25 |$35 $21 ($31 |$2d |$3d |$39 $32

bbro $Of

bbrl $1f

bbr2 $2f

bbr3 $3f

89

Quick Reference

noargimm zp ZpxX zZpy izx izy

bbr4 $4f
bbr5 $5f
bbré $6f
bbr7 $7f
bbsD $f
bbsl $of
bbs2

bbs3 $bf
bbs4

bbs5 $df
bbs6 Pef
bbs7 $ff
bit $89 |$24 |$34 $2c |$3c

bra $80

cmp $c9 |$c5 |$d5 $cl |$dl |$cd |[$dd |$d9 $d2
dec |$3a $c6 | $d6 $ce |$de

eor $49 |$45 |$55 $41 |$51 |$4d |$5d |$59 $52

inc |$la $e6 |$6 $ee |$fe

jmp $4c $6c $7c
Ida $a9 |$a5 |$b5 $al |$bl |$ad |$bd |$b9 $b2
ora $09 ($05 |$15 $01 [$11 ($0d |$1d |$19 $12
phx |$da

phy |$5a

plx |$fa

ply |$7a

rmb0 $07

rmbl $17

rmb2 $27

rmb3 $37

rmb4 $47

rmb5 $57

rmb6 $67

rmb7 $77

shc $e9 |$e5 |5 $el |$f1 |$ed |$fd [$F9 $f2
smb0 $87

smbl $97

smb2 $ar

smb3 $o7

smb4 $c7

smb5 $d7

smb6 $e7

90

Quick Reference

cmd noargimm | zp ZpxX zZpy izx izy

smb7 $7

sta $85 |$95 $81 [$91 ($8d ($9d |$99 $92
stp |$db

stz $64 |$74 $9c [$9%

trb $14 $lc

tsb $04 $0c

wa |[$cb

A.4. Assembler Directives
Table A.7. Directives

Directive Example Description

* *=$1000 Sets the memory position to a given
value.

dign .aign $100 Aligns the memory position with
the given value. Ex. ".aign $100" at
memory position $1234 will set the
position to $1300.

.assert .assert "Test 1",2+2,4 Assertsthat two expressions or code-
blocks are equal.

.asserterror .asserterror "Test 2", List().get(27) |Asserts that a given expression or
codeblock generates an error.

.break .break Puts a breakpoint on the next gener-
ated bytes.

.y .by $01,$02,$03 An diasfor ".byte'.

.byte .byte $01,$02,$03 Outputs bytes.

.const .const DELAY=7 Defines a constant.

.define .definewidth, height {...} Executes a block of directives in
'functionmode' (faster) to define val-
Ues.

disk (disk [..disk pararamters..] {..filepa-| Creates a d64 imagefile.

rameters..}

.dw .dw $12341234 An diasfor '.dword'.

.dword .dword $12341234 Outputs doublewords (4 byte val-
ues).

.encoding .encoding "screencode_upper" Sets the character encoding.

.enum .enum {on, off} Defines a series of constants.

.error .error "not good!" Creates an user raised error.

.errorif .errorif x>10 "not good!" Creates an user raised error if condi-
tion is evaluated to true.

.eval .eval x=x+y/2 Evaluates a script expression.

file file [name="myfile.prg" | Createsaprg or binfile from the giv-

segments="Code, Data'] en segments.

filemodify filemodify Encrypt(33) Modify the output of the current

source file with the given modifier.

91

Quick Reference

Directive
filenamespace

Example
filenamespace myspace

Description

Creates a namespace for all the
following directives in the current
source file.

fill fill 10, i*2 Fillsanumber of byteswiththevalue
of agiven expression.

fillword fillword 10, i*$102 Fillsanumber of wordswith the val-
ue of agiven expression.

for for(var i;i<10;i++) {...} Creates afor loop.

function function area(h,w) {..} Defines afunction.

Af Af(x>10){...} Executes code if the given condition
istrue.

.import binary .import binary "Music.bin" Imports a binary file.

.import c64 .import c64 "Music.c64" Imports a c64 files. Same as ".import

binary', but ignores the two address
bytes at the start of thefile.

.import source

.import source "MyLib.asm"

Imports another source file. (Depri-
cated, use #import instead)

.mport text .import text "scroll.txt" Imports atext file.

.importonce .importonce Make the assembler skip the current
file if it has already been import-
ed. (Depricated, use #importonce in-
stead)

Jabel Jabel color=$d020 Assignsagiven expressionto alabel.

Johifill Johifill $100, i*40 Fills two table with hi and lo byte of
the given expression. Address of the
tables can beread by connecting ala-
bel.

.macro .macro BasicUpstart() { ...} Defines amacro.

.memblock .memblock "New block" Defines a new memoryblock at the
current memoryposition.

.modify .modify Encrypt(27) { ...} Modifies the output of a codeblock
using the given modifier.

.namespace .namespace myspace{ ..} Creates alocal namespace.

.pc .pc=$1000 Same as *='

.plugin .plugin "plugins.macros.MyMacro" | Tellsthe assembler to look for aplu-
gin at the given java-package path.

print Jprint "Hello" Prints amessage to the consolein the
last pass.

.printnow .printnow "Hello now" Prints a message to the console im-
mediately.

.pseudocommand .pseudocommand mov src:tar {...} | Defines a pseudocommand.

.pseudopc .pseudopc $2000{...} Sets the program counter to some-
thing else than the actual memory
position.

.return .return 27 Used inside functionsto return aval-
ue.

.segment .segment Data"My Data" Switches to another segment.

92

Quick Reference

Directive Example Description

.segmentdef .segmentdef Data [start=$1000] Defines a segment.

.segmentout .segmentout Output the bytes of an intermedi-
[segments="DRIVE_CODE"] ate segment to the current memory-

block.

.struct struct Point {x,y} Creates a user defined structure.

te te"hello" An diasfor "text'.

text .text "hello” Dumps text bytes to memory.

var var x=27 Definesavariable.

.while while(i<10) {...} Creates awhile loop.

W0 .wo $1000,$1012 Andiasfor .word'.

.word .word $1000,$1012 Outputs words (two bytes values),

.Zp .zp{ label: .byte0...} Marks unresolved labels as being in

the zeropage.

A.5. Value Types
Table A.8. Value Types

Type Example Description

65xxArgument ($10),y A value that defines an argument
given to amnemnonic.

BinaryFile LoadBinary(“file.bin", "") A value containing byte data.

Boolean true Either true or false.

Char X' A character.

Hashtable Hashtable() A value representing a hashtable.

List List() A list value.

Matrix Matrix() Represents a 4x4 matrix.

Null null A null value.

Number 274 A floating point number.

OutputFile createFile("breakpoints.txt") An value representing an output file.

Picture L oadPicture("blob.gif") The contents of aloaded picture.

SidFile LoadSid("music.sid") The contents of asid file.

String "Hello" A string value.

Struct MyStruct(1,2) Represents a user defined structure.

Vector Vector(1,2,3) A 3d vector value.

93

Appendix B. Technical Detalls

In Kick Assembler 3 some rather advanced techniques have been implemented to make the assembling more
flexible and correct. I'll describe some of the main points here. Y OU DON'T NEED TO KNOW THIS, but if you
are curious about technical details then read on.

B.1. The flexible Parse Algorithm

Kick Assembler 3 uses aflexible pass algorithm, which parses each assembler command or directive as much
as possible in each pass. Some commands can be finished in first pass, such as Ida #10 or sta $1000. But if a
command depends on information not yet given, like‘jmp routine’ where the routine label hasn't been defined yet,
an extra passis required. Kick Assembler keeps executing passes until the assembling is finished or no progress
has been made. Y ou can write programs that only need one pass, but most programs will need two or more. This
approach is more flexible and gives advantages over normal fixed pass assembling. All directives don't haveto be
in the same phase of assembling, which gives some nice possibilities for future directives.

B.2. Recording of Side Effects

Side effects of directives are now recorded and replayed the subsequent passes. Consider the following eval
directive: .eval a=[5+8/2+1]* 10.In thefirst passthe calculation [5+8/2 + 1]* 10 will be executed and find the result
100, which will be assigned to a. In the next pass no calculation is done, only the side effect (a=100) is executed.
This speeds up programs with heavy scripting, since the script only has to execute once.

B.3. Function Mode and Asm Mode

Kick assembler has two modes for executing directives. ‘ Function Mode' is used when the directive is placed
inside a function or .define directive, otherwise ‘Asm Mode' is used. ‘Function Mode' is executed fast but is
restricted to script commands only (.var, .const, .for, etc.), while* Asm Mode’' can handleall directives and records
the side effects as described in previous section. All evaluation startsin ‘ Asm Mode' and enters ‘ Function Mode'
if you get inside the body afunction or .define directive. This meansthat at some point thereis always a directive
that records the result of the evaluation.

B.4. Invalid Value Calculations

Invalid values occur when the information used to calculate a value that isn't available yet. Usually this starts
with an unresolved label value, which is defined later in the source code. Normally you would stop assembling
the current directive once you reach an invalid value, but that might leave out some side effects you did intend
to happen, so instead of stopping, the assembler now carries on operating on the invalid values. So an unresolved
label isjust an unresolved Number value. If you add two number values and one of them isinvalid then the result
will be another invalid number value. If you compare two invalid numbers then you get an invalid boolean and
so forth. This helpsto track down which values to invalidate. If for example you use an invalid number as index
in aset function on alist, you must invalidate the whole list since you don't know which element is overwritten.
Some examples of invalid value calculations:

4+| nval i dNunmber -> I nval i dNunber

Inval i dNunber !'= 5 -> | nvalidBool ean

myLi st.set (3, InvalidNunber) -> [?,?, I nvalidNunber]
myLi st. set (I nval i dNunber, “Hello”) -> InvalidLi st
myLi st . set (4+4*1 nval i dNunber, “Hello”) -> InvalidLi st

94

Appendix C. Going from Version 3.x
to 4.0

C.1. The new features

The parser have been rewritten which made some new features possible:
1. You can now use *=$1000 like in good old Turbo Assembler.

2. You cannow use soft parenthesis. Kick Assembler will know by the context when it meansan indirect adressing
mode and when its anormal parenthesis.

3. A preprocessor have been implemented. Y ou can now use the commands #define, #undefine, #if, #else, #elif
and #endif (Those who know the C# preprocessor will be familiar with these).

4. There are also preprocessor commands for importing source: #import, #mportif, #importonce. #mport and
#importonce works as the directives known from version 3.x. , but works better together with the preprocessor.
#importif supports conditional imports as a simple oneliner.

5. The colon in front of macro and pseudocommand calls are now optional.

6. You can now add an optional ;" after directives and mnemonics. This is usefull if you are use to program
languages like C++/Java or C# where these are required.

7. Kick Assembler now report multiple errors in the parsing phase instead of just the first.
8. Kick Assembler can now report syntax elements back to editors. (IN PROGRESS)

9. Kick Assembler can now report syntax errors back to editors, without starting to evaluate the code. (IN PRO-
GRESS)

10.The new parser is faster. The Kick Assembler test suite now assembles in less than half of the time it took
when using v3.40.

The scoping/namespace system has been upgraded:

1. Functions, Macros and PseudoCommands are now put in the current namespace when defined. (In 3.x only
symbols where scoped)

2. Namespaces can now be reused (Several files can use the same namespace without getting a ‘symbol already
defined' error).

3. Thereisnow a getNamespace() function that tells the current namespace.

4. Use'@' as prefix when defining a symbol/function/macro/pseudocommand to put it in the root-scope or root-
namespace.

5. Use'@' as prefix when referencing a symbol/function/macro/pseudocommand to look it up in the root-scope
or root-namespace.

6. NOTICE: Thereare currently no way of seeing functions/macros/pseudocommands from the outside of aname-
space so place your public library functionsin the root namespace.

7. Import now always imports to the root scope (Doesn't use the scope at the import call as parent scope)

8. Function/macro/pseudocommand calls now has the definition scope (where the function/macro/pseudocom-
mand is defined) as parent scope during the call. Thisis consistent with most language like Java, C# etc.

95

Going from Version 3.x to 4.0

9. All references to a symbol/function/macro/pseudocommand is now resolved in the prepass. This means you
will get errors for misspelled symbols at once. It also means that you can get errors from non-executed code.

10.Resolving symbols in the prepass’ gives the same or dightly slower assemble times for performance light
sources, but for heavy calculationsit is much faster (Example: The fractal2 example from v3.x assembles 38%
faster with Kick Assembler 4)

Other news are:
1. Thereisnow a.while directive
2. Thereisnow updated ‘quick reference' appendix of options, preprocessor directives, directives and value types.
3. Thereisnow an .encoding directive to switch between petscii/screencode encoding and uppercase/mixedcase.
4. Lines starting with # in KickAss.cfg are now ignored.
5. The source in the manual have been updated
6. The example suite has been rewritten (Its worth alook)

7. A converter to help convert from v3.x to 4.x isincluded in the distributed zip-file.

C.2. Differences in syntax

There is a small change in the syntax between version 3.x and 4.x, which means that some code might not
compile right away - but don't worry, we made a converter to convert sources to the new syntax and have a
command line option that will make most code run.

In Kick Assembler 3.x the assembler automatically knows when one command ends and another begins. This
means you can write several commands in one line like this:

sei |da #$1b sta $d011 |da #$32 sta $d012 ‘

In version 4.x you have to separate commands by either aline shift or asemicolon. So in version 4.x the above
looks like this:

sei; |da #$1b; sta $d011; |da #$32; sta $d012 ‘

In general, thisis not a problem since you usually put each mnemonic on a separate line. If you want a command
to span severd lines, use a parenthesis (hard or soft). Since KickAssembler balances the parenthesis sets, only
newlines on the outer level will terminate the command so you can write like this:

| da #(
7 * cal cul at eSonet hi ng(a, b)
+ 3 * cal cul at eSomeMore(x, y, z)

The use of semicolon to terminate commands collide with the old pseudo commands which use the semicolon to
separate its arguments. To be compatible with old pseudo commands, use the -pseudo3x option at the command
line. Y ouwill not be able to write several commands after a pseudocommand call, but your old code will compile.
A better option isto convert your code to the new syntax where al semicolons are changed to normal colons. (Y ou
can use the converter enclosed in the KickAssembler zip file):

/! Pseudocomand calls in V3.x
:nmov #10 ; data, x

/! Pseudocomand calls in V4. x
mov #10 : data, x /'l The colon in front is now optional

96

Going from Version 3.x to 4.0

C.3. Difference in behavior

Since all references is now checked prepass, dead code can cause errors. For example, a function that never
gets called will now generate an error:

.function nyFuncl() {
.var x = unknownSynbol ; // Error: Undefined synbol

}

If-directives inside functions/defines is now scoped, meaning you can't do like this anymore (This is aready
the case for .if directives outside functions/defines):

.function nyFuncl(flag) {

i f (flag)
.var nmessage = "flag is true"
el se
.var nmessage = "flag is fal se"
.print nessage // Error - 'nessage' is unknown

C.4. Converting 3.x sources

To make the transition to from version 3.x to 4 easy, use the converter to convert old source files.

First, take a backup of your source before converting. The source files will be overwritten so its good to have
acopy of the original source files. In case there comes updates to the converter, you need the origina v3 source
code to convert again.

Step one in converting is starting up the converter. This is done by the following command:

java -jar Ki ckAss3To4Converter.jar

Step two is selecting what to convert. Thisis done by checking the check boxes in the upper panel. The ones
already checked are meant to be converted (Y ou should have a good reason to un check them). The non checked
('Replace .pc with *") are cosmetic changes.

Step threein converting is selecting which source files to convert. To do so, use the 3 buttons:
1. 'Add Files - Gives you a dialog from which you can pick individual sourcefiles.

2. 'Add SourceDir' - Gives you a dialog from which you can add source files of a given type(s) from a source
directory and it's subdirectories.

3. 'Removefiles - Removes the selected files of the current file list.

The selected fileswill appear in the list in the center.
When done, execute the final step by pressing the 'Convert' button, and the conversion will be executed.
The converter will take care of most of the transitions. Currently know issues are:

1. If acommand spans more than one line and doesn't contain akind of parenthesis (soft, hard or curly), you might
have to set one as explained in the previous section.

97

	Kick Assembler Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Running the Assembler
	2.2. An Example Interrupt
	2.3. Configuring the Assembler

	Chapter 3. Basic Assembler Functionality
	3.1. Mnemonics
	3.2. Argument Types
	3.3. Number formats
	3.4. Labels, Arguments Labels and Multi Labels
	3.5. Memory Directives
	3.6. Data Directives
	3.7. Encoding
	3.8. Importing source code
	3.9. Importing data
	3.10. Comments
	3.11. Console Output
	3.12. Breakpoints and watches

	Chapter 4. Introducing the Script Language
	4.1. Expressions
	4.2. Variables, Constants and User Defined Labels
	4.3. Scoping
	4.4. Numeric Values
	4.5. Parentheses
	4.6. String Values
	4.7. Char Values
	4.8. The Math Library

	Chapter 5. Branching and Looping
	5.1. Boolean Values
	5.2. The .if directive
	5.3. Question mark if's
	5.4. The .for directive
	5.5. The .while directive
	5.6. Optimization Considerations when using Loops

	Chapter 6. Data Structures
	6.1. User Defined Structures
	6.2. List Values
	6.3. Working with Mutable Values
	6.4. Hashtable Values

	Chapter 7. Functions and Macros
	7.1. Functions
	7.2. Macros
	7.3. Pseudo Commands

	Chapter 8. Preprocessor
	8.1. Defining preprocessor symbols
	8.2. Deciding what gets included
	8.3. Importing files
	8.4. List of preprocessor directives
	8.5. Boolean operators

	Chapter 9. Scopes and Namespaces
	9.1. Scopes
	9.2. Namespaces
	9.3. Scoping hierarchy
	9.4. The Namespace Directives
	9.5. Escaping the current scope or namespace
	9.6. Label Scopes
	9.7. Accessing Local Labels of Macros and Pseudocommands
	9.8. Accessing Local Labels of For / While loops
	9.9. Accessing Local Labels of if's

	Chapter 10. Segments
	10.1. Introduction
	10.2. Some quick examples
	10.3. Segments
	10.4. Where did the output go?
	10.5. The Default segment
	10.6. Naming memory blocks while switching segment
	10.7. The default memory block
	10.8. Including other segments
	10.9. Including .prg files
	10.10. Including sid files
	10.11. Boundaries
	10.12. Overlapping memory block
	10.13. Segment Modifiers
	10.14. Intermediate segments
	10.15. The .segmentout directive
	10.16. Debugger data
	10.17. List of segment parameters

	Chapter 11. PRG files and D64 Disks
	11.1. Introduction
	11.2. Parameter Maps
	11.3. The File Directive
	11.4. The Disk Directive
	11.5. Disk Parameters
	11.6. File Parameters
	11.7. Custom Disk Writers

	Chapter 12. Import and Export
	12.1. Passing Command Line Arguments to the Script
	12.2. Import of Binary Files
	12.3. Import of SID Files
	12.4. Converting Graphics
	12.5. Writing to User Defined Files
	12.6. Exporting Labels to other Sourcefiles
	12.7. Exporting Labels to VICE

	Chapter 13. Modifiers
	13.1. Modify Directives

	Chapter 14. Special Features
	14.1. Name and path of the sourcefile
	14.2. Basic Upstart Program
	14.3. Opcode Constants
	14.4. Colour Constants
	14.5. Making 3D Calculations

	Chapter 15. Assemble Information
	15.1. The AsmInfo option
	15.2. Realtime feedback from the assembler
	15.3. The AsmInfo file format
	15.4. The sections
	15.4.1. Libraries section
	15.4.2. Directives section
	15.4.3. Preprocessor directives section
	15.4.4. Files section
	15.4.5. Syntax section
	15.4.6. Errors section

	Chapter 16. Testing
	16.1. Asserting expressions
	16.2. Asserting errors in expressions
	16.3. Asserting code
	16.4. Asserting errors in code

	Chapter 17. 3rd Party Java plugins
	17.1. The Test Project
	17.2. Registering your Plugins
	17.3. A quick Example (Macros)
	17.4. General Communication interfaces
	17.4.1. The IEngine Interface
	17.4.2. The IValue Interface
	17.4.3. The ISourceRange Interface
	17.4.4. The IMemoryBlock Interface
	17.4.5. The IParameterMap Interface

	17.5. The Plugins
	17.5.1. Macro Plugins
	17.5.2. Modifier Plugins
	17.5.3. SegmentModifier plugins
	17.5.4. DiskWriter Plugins
	17.5.5. Archive Plugins
	17.5.6. AutoIncludeFile Plugins

	Appendix A. Quick Reference
	A.1. Command Line Options
	A.2. Preprocessor Directives
	A.3. Mnemonics
	A.3.1. Standard 6502 Mnemonics
	A.3.2. Illegal 6502 Mnemonics
	A.3.3. DTV
	A.3.4. 65c02 Mnemonics

	A.4. Assembler Directives
	A.5. Value Types

	Appendix B. Technical Details
	B.1. The flexible Parse Algorithm
	B.2. Recording of Side Effects
	B.3. Function Mode and Asm Mode
	B.4. Invalid Value Calculations

	Appendix C. Going from Version 3.x to 4.0
	C.1. The new features
	C.2. Differences in syntax
	C.3. Difference in behavior
	C.4. Converting 3.x sources

