
G-Pascal

1 | P a g e

And

The C64 Mini

VICE Commodore 64

G-Pascal

2 | P a g e

Contents
Current COPYRIGHT .. 6

COPYRIGHT .. 6

PERMISSION TO DISTRIBUTE ... 6

LIMITATION OF LIABILITY .. 6

Document Revisions.. 6

INTRODUCTION ... 7

Run-tlme package ... 7

This Manual ... 8

Suggestions ... 8

HOW TO LOAD AND RUN G-PASCAL ... 9

SPECIAL KEYBOARD FUNCTIONS ... 9

GETTING STARTED WITH G-PASCAL .. 11

HOW TO USE G-PASCAL .. 13

USING THE EDITOR .. 15

The commands are: .. 15

EDITOR COMMANDS ... 15

BEGINNER’S GUIDE TO PASCAL ... 21

PROCEDURES and FUNCTIONS .. 24

STATEMENTS ... 26

Procedure invocation .. 27

IF .. 27

ELSE CLAUSE .. 27

WHILE .. 28

REPEAT .. 28

CASE .. 28

WRITE and WRITELN ... 29

READ .. 29

FOR .. 32

CALL ... 32

Other statements .. 32

EXPRESSIONS... 33

Operands ... 33

G-Pascal

3 | P a g e

Operators .. 33

MEANING OF OPERATORS .. 33

NOTES ON THE COMPILER .. 36

DATA TYPES ... 37

Char ... 37

Other data types ... 37

MEM ARRAY .. 38

MEMC ARRAY .. 38

ADDRESS ... 38

LOAD ... 38

SAVE .. 39

GETKEY .. 39

ABS (value); ... 40

SAMPLE PROGRAMS ... 41

Sieve Prime Number ... 41

Square root ... 42

COMPILING YOUR PROGRAM ... 44

COMPILER DIRECTIVES .. 44

COMPILER ERROR MESSAGES ... 46

RUN-TIME ERROR MESSAGES ... 50

FILE HANDLING ... 51

Meaning of error codes... 54

OPENING AND CLOSING FILES .. 55

OPEN (file, device, channel, “file-name*) ... 55

THE GRAPHICS COMMAND ... 59

SPRITE PROCESSING OVERVIEW ... 63

The SPRITE command ... 64

GENERAL SPRITE COMMANDS .. 66

MISCELLANEOUS GRAPHICS COMMANDS .. 73

SETCLOCK (hours, minutes, seconds, tenths); .. 78

Game Ports ... 79

PADDLE (gameport);.. 79

IOYSTICK (gameport); .. 79

G-Pascal

4 | P a g e

G-PASCAL SOUND EFFECTS ... 81

The SOUND command .. 81

The VOICE command .. 83

Sound effect functions .. 88

RANDOM ... 88

ENVELOPE ... 88

INDEPENDENT MODULES .. 90

Advantages of independent modules ... 90

How to implement independent modules .. 90

Multiple procedures in one module ... 90

EXAMPLES OF INDEPENDENT MODULES .. 91

HOW TEXT IS STORED BY G-PASCAL ... 94

Idiosyncrasies of tokenization ... 96

CONVERTING FROM OTHER PASCALS ... 97

DEBUGGING .. 99

Other debugging techniques .. 100

How to start Debug or Trace from within your program .. 101

CHANNEL NUMBERS ... 101

MEMORY MAP .. 101

MACHINE LANGUAGE SUBROUTINES ... 102

MEANINGS OF P-CODES .. 105

Syntax Diagrams .. 108

Program... 108

Simple Expression ... 109

Factor .. 110

Statement ... 111

Appendix ... 112

Colour Codes ... 112

Commodore 64 ... 112

C64 and Vice information ... 112

US PC keyboard ... 112

Vice Printer setup .. 113

The C64 Mini (and likely THE C64 ?Maxi?). ... 113

G-Pascal

5 | P a g e

Files in package. .. 113

How to load the G-Pascal program. .. 113

G-Pascal

6 | P a g e

Current COPYRIGHT
As of November 23, 2019.

Source: http://www.gammon.com.au/GPascal/source/license.txt

COPYRIGHT
GPascal is copyright 1986 to 2011 by Nick Gammon. All rights reserved worldwide.

GPascal is not in the public domain and Nick Gammon keeps its copyright.

PERMISSION TO DISTRIBUTE
Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

LIMITATION OF LIABILITY
The software is provided "as is", without warranty of any kind, express or implied, including but

not limited to the warranties of merchantability, fitness for a particular purpose and

noninfringement. In no event shall the authors or copyright holders be liable for any claim,

damages or other liability, whether in an action of contract, tort or otherwise, arising from, out

of or in connection with the software or the use or other dealings in the software.

Document Revisions
Version Revised by Revision Description Date

1.0 Nick Gammon, Sue Gobbett Original Publication Cira 1984

2.0 Bill Brouwer* Converted to MS Word format
and reformatted.

December 2019

* if you find errors or have suggestions for enhancements to this document please send them

to bill.brouwer@gmail.com

http://www.gammon.com.au/GPascal/source/license.txt

G-Pascal

7 | P a g e

INTRODUCTION

Congratulations on purchasing G-Pascal! We are sure that you will find it very useful and easy to use.

G-Pascal on the Commodore 64 contains very advanced textures making it an excellent

development tool for this computer, namely:

• High speed compiler (6,000 lines per minute) which implements a comprehensive subset of

standard Pascal.

• Built-in powerful Text Editor which includes global Find and Replace capability.

• Extensions provide extensive support for the Commodore 64’s graphics, music and sound

effects, time-of-day clock, interval timer, cursor control and colour control. There are in fact 76

separate functions and actions built-in as extensions for the Commodore 64. Sprite handling is

particularly well catered for, with commands to automatically move sprites around the screen

with animation if desired, and to automatically stop sprites if they collide.

• Complete arcade-style games can be written without using a single PEEK or POKE.

• Error messages are in plain English with an arrow to the point of error.

• As the entire system is memory-resident, editing, compiling and testing is very fast and easy.

• Pascal programs may readily be stored on disk or cassette - programs are stored in a

‘compressed’ format, thereby speeding up loading and saving times, and allowing a larger

program to fit into memory.

• Support for machine-code (assembler) subroutines it desired.

• Debugging aids, such as Trace and Debug modes, which can be invoked at anytime from the

keyboard.

• Compiler supports INTEGER and CHAR data types, and single- dimension arrays. Integers range

from —8388608 to + 8388607.

• Compiler supports the standard Pascal constructs: CONST, VAR, PROCEDURE, FUNCTION, WHILE,

DO, REPEAT, FOR, IF and CASE.

• Arithmetic expressions may contain the relational operators as well as +, -, /, ", MOD, AND, OR,

XOR, SHL, SHR and ABS.

• Compiler supports independent modules (Procedures that are compiled independently and

located elsewhere in memory).

• Compiler produces relocatable P-codes - the object code produced by the compiler may be run

at any memory address without change.

Run-tlme package
If you are planning to develop commercial programs or games in G- Pascal please enquire about

our interpreter-only Run-time package. The Run-time system consists of the interpreter as a

stand-alone program which is 6K long. Using the Run-time system simply consists of loading the

P-codes produced by this compiler and then running the interpreter.

G-Pascal

8 | P a g e

This Manual
This Manual has been designed with a number of purposes in mind:

1. To introduce the Pascal language.

2. To fully describe G-Pascal’s capabilities and be a ‘reference manual’ for the experienced

programmer.

3. To describe the G-Pascal support system, such as the Editor, File system, error messages and so

on, so that the G-Pascal system is easy to understand and use.

lt falls beyond the scope of this Manual to provide a really comprehensive guide to the Pascal

language. There are many good books on the Pascal language in bookshops and libraries, containing

between them thousands of pages of information and examples about Pascal, good programming

practices, games and serious applications. You are strongly recommended to find a Pascal book

which covers the type of programs that you are interested in (games, mathematics, business,

adventure and so on).

G-Pascal and this Manual are somewhat oriented towards arcade- style games. The reason for this is

that the Commodore 64 with its sprites and 3-voice synthesizer is an excellent and low-cost method

of easily writing and experimenting with arcade style games. Consequently, the discussions and

examples (particularly about sprites) seem the most meaningful in this context.

However there is no reason why G-Pascal cannot be used for ‘text’ oriented programs, such as

adventure games or more serious applications, for example: small scale business software,

mathematics or probability experiments, and educational software.

Suggestions
If you have just purchased G-Pascal and don't know where to start, these suggestions may be helpful:

• First, load G-Pascal into your Commodore 64 so that you can try out the examples for yourself,

and confirm that G-Pascal does what this Manual says it will.

• Turn to ‘Getting Started With G-Pascal’ (over the page) and follow the step-by-step instructions

to enter, compile and run your first program.

• While your first program is still in memory start experimenting! Try different Editor commands -

try saving the program to disk or cassette and re-loading it - try tracing the program - try

changing the program.

• G-Pascal is designed to be ‘fail-safe’. Built-in checks make it very hard to do something ‘wrong’.

For example, it will not allow a program to be run before it has been compiled. The very worst

that can happen is that a program wipes out itself or G-Pascal (possibly making it necessary to

turn off the power and re-load G-Pascal) however this is extremely rare.

• If you are a beginner to Pascal, or want to know in detail about what G-Pascal will do, read the

section ’Beginner’s Guide to Pascal’.

• Skim through the Manual, becoming familiar with what G- Pascal can do. Try out the examples -

most of them are quite small and only take a couple of minutes to type in.

• Experiment in more detail with the aspects of G-Pascal (and the Commodore 64) that you are

interested in (e.g. graphics, sound effects, games, etc.)

G-Pascal

9 | P a g e

HOW TO LOAD AND RUN G-PASCAL

1. Load and run G-Pascal as directed by the instructions that came with your disk, cassette or

cartridge.

2. Your G-Pascal is now running! You will see:

Now see the section ‘Getting started with G-Pascal’ which is a step-by-step guide to entering your

first program.

SPECIAL KEYBOARD FUNCTIONS

The following keys have special meaning to G-Pascal.

Space bar

Pressing ’space’ will freeze a display on the screen. Press any key (except RUN/STOP)

and the display will continue. RUN/STOP will abort the display.

RUN/STOP

This will abort a display, or if a program is running, will abort the program with a

message showing which P-code was currently being executed.

RUN/STOP/RESTORE

Holding down the RUN/STOP key and then pressing RESTORE will do a ‘warm

boot’ aborting whatever G-Pascal is doing, clearing the screen, and returning to the

Main Menu. Any program in memory is not lost, however. Normally just pressing

RUN/STOP (without RESTORE) will be sufficient to stop a program running, how-

ever press RESTORE as well if nothing seems to be happening.

COMMODORE/T

If a program is running will cause a Trace to start. (See Debugging your program for

more details). To enter COMMODORE/T hold down the key with the Commodore logo

(bottom left hand corner of the keyboard) and then press the ‘T’ key.

COMMODORE/D

G-Pascal

10 | P a g e

lf a program is running will cause Debug mode to start. (See ’Debugging your program’

for more details). To enter COMMODORE/D hold down the key with the Commodore

logo (bottom left hand corner of the keyboard) and then press the ‘D’ key.

COMMODORE/N

If a program is running will stop a Trace or Debug. (N = Normal). If the program is not

Tracing or Debugging pressing COMMODORE/N will have no effect. To enter

COMMODORE/N hold down the key with the Commodore logo (bottom left hand corner

of the keyboard) and then press the ‘N’ key.

Arrow keys

The arrow keys (and INST/DEL key) function the same as in Basic — useful when in the

Editor or when typing in a file name to Load or Save.

G-Pascal

11 | P a g e

GETTING STARTED WITH G-PASCAL

This section provides a step-by-step introduction to using the G- Pascal system. We will key in,

compile and run a simple program. Please work through this example using your Commodore 64

- it will give you familiarity with the various phases of the system (editing, compiling and

running).

To distinguish between what you enter and what G-Pascal responds, all input to be entered by

you or displayed by G-Pascal is in bold Fixed point font. All Editor commands are

terminated by pressing the RETURN key.

After loading G-Pascal you will see the Main Menu - enter ‘E’ to invoke the Editor

(E)dit, (C)ompile, (D)ebug, (F)i|es,

(R)un, (S)yntax, (T)race, (Q)uit ? E

The Editor prompts with a colon (:). Type L (for List) to confirm that there is no program

currently in memory …
:L

Now enter your program by placing the Editor in input mode. To do this, type I (for Input)
 :I

The Editor will now prompt you with a '1’ - indicating that you are about to enter line number 1

of your program. Type in the program as shown, pressing RETURN at the end of each line. If you

make a typing mistake while entering a line, you can use the INST/DEL or cursor movement keys

(arrow keys) to correct it
1 (*program to display the squares

2 of numbers from 1 to 10 *)

3 const limit = 10;

4 var k : Integer;

5 begin

6 for k := 1 to limit do

7 wrlteln (*square of ",k, " Is ",k * k)

8 end.

9

Just press RETURN on its own here and the Editor will leave Input mode, and display a colon

again, indicating it is ready for another command.

Now list your program by typing L again. You should now see a listing of your program which

looks identical to the program above …

If you notice a mistake at this stage the easiest way to correct it is to use the Editor’ s Modify

command. For example, if you misspelt ‘begin’ on line 5 as ‘began’, then you would type in ‘M5’

to modify line 5. The Editor will echo the current contents of line 5, and then enter Input mode

to allow you to type one or more lines to replace it. The whole operation would look like this …

:M5

G-Pascal

12 | P a g e

5 began

5 begin

6

Rather than retyping the line you may wish to just move the cursor over the line in error (using

the arrow keys), correct the line and then press RETURN.

Just press RETURN here to leave Input mode again. You can now attempt to compile it by

entering C (for Compile). Compiling the program converts it to object code (P-codes) ready for

Running.

If you have made an error in typing in your program you will get an error message, and be

returned to the Editor, with the colon (:) displayed again. If this happens, modify the offending

line and try again.

If you have not made any errors the whole process will look like this …

At this stage the Main Menu will be displayed again - now enter R (for Run) and you will see the

results being displayed on the screen .. .
(E)dit, (C)ompile, (D)ebug, (F)i|es,

(R)un, (S)yntax, (T)raoe, (Q)uit ? R

Running

square of 1 is 1

square of 2 is 4

square of 3 is 9

square of 4 is 16

square of S is 25

square oi 6 is 36

square of 7 is 49

square of 8 is 64

square of 9 is 81

square of 10 is 100

run finished — press a key

G-Pascal now displays its ‘end of run’ message, as above. This is to give you a chance to read the

results. When you press a key (such as RETURN), the screen will clear and you will see the Main

Menu again

G-Pascal

13 | P a g e

(E)dit, (C)ompile, (D)ebug, (F)i|es,

(R)un, (S)yntax, (T)raoe, (Q)uit ?

You can now enter the Editor again and try something else! You may want to experiment with

minor changes to this demonstration program to get used to the Editor and the Compiler. This

would be a good time to read the part of this Manual pertaining to the Editor and experiment

with the other Editor commands, such as Find and Replace. When you are confident about the

Editor try some of the other

examples in the book, such as those demonstrating the various graphics and sound effects

capabilities of G-Pascal. If you want to delete the program currently in memory so that you can

‘start from scratch’, just enter: ’D 1-9999‘ as in the following illustration
(E)dit, (C)ompile, (D)ebug, (F)i|es,

(R)un, (S)yntax, (T)raoe, (Q)uit ? E

:D 1-9999

Do you want to delete 8 lines '2 Y/N Y

8 deleted

:L

:

For a summary of Editor commands, just enter ‘H’ (Help).

HOW TO USE G-PASCAL
After loading and running G-Pascal or after a compile or run, you will see the

‘Main Menu’:
(E)dit, (C)ompile, (D)ebug, (F)i|es,

(R)un, (S)yntax, (T)raoe, (Q)uit ? E

It is called a menu because you have various choices to make, depending on what you want. To

choose one, press the letter corresponding to your choice (the letter in brackets). For example

press C for Compile. Do not press the RETURN key as well. If you make an incorrect choice the

Commodore 64 will re-display the Main Menu.

Edit

G-Pascal

14 | P a g e

Enters the Editor to allow you to type in or change a Pascal program. When the Editor is

active it will display a colon (:) to let you know it is awaiting an Editor command. See

’Using the Editor’ for more details.

Compile

Compiles a program (that is, converts it to P-codes) that you have loaded or edited. If

the compile has no errors you may then type R (for Run) if you want to nm your

program. A program must be compiled before it can be run. See ’Compiling your

program’ for more details.

Syntax

This does a ‘syntax check’ of your program, letting you know if it has any errors. It does

not generate P-codes however so you must do a compile as well before running the

program. See ’Compiling your program’ for more details.

Run

This will run your program. lt must have been successfully compiled first or the message

‘No valid compile done before’ will be displayed. G.-Pascal will display:
Running

and then commence running your program.

Debug and Trace

These are a variation of the ‘Run’ command which, in addition to running your program,

display debugging information as your program runs. You will not normally choose these

options as the information they display clutters up the screen somewhat and slows

down execution of the program considerably. See ‘Debugging your program’ for more

details.

Files

Enters the ‘Files Menu’ to allow you to load or save programs, tum on or off your

printer, and use the Commodore 64 DOS to delete files, etc. See ’File handling’ for more

details.

Quit

Leaves G-Pascal, but first checks that you wanted to quit by asking:
Quit ? Y/N

If you do not type ‘Y’ the quit has no effect. Do not Quit unless you have finished with G-

Pascal for now.

G-Pascal

15 | P a g e

USING THE EDITOR
The Editor displays a colon (:) when it is ready for a command, so if you see a : you know you are

in the Editor. To leave the Editor enter: Q (RETURN) and you will return to the Main Menu, or QF

(RETURN) and you will go straight to the Files Menu.

Line numbers

The Editor is line-number oriented. This means that all Editor commands refer to the line-

numbers of each line in your program. The line numbers are allocated automatically by the

Editor, starting at 1 and going up by 1 each line. The line number allocation is ‘dynamic’, that is,

if you insert a line between what is currently line 6 and line 7 then the new line becomes line 7

and the line that used to be line 7 becomes line 8, etc.

Commands

All Editor commands consist of one letter followed by none, one or possibly two line numbers.

For example:
L 10,20

would list lines 10 to 20. In some commands (Find and Replace), the line number range is also

followed by a ‘string’ enclosed within delimiters. If you are specifying a line-number range, there

should be either no spaces, or one space between the command and the line numbers.

If you are specifying two line numbers (as in the above example) you can use any non-numeric

’delimiter’ between the line numbers (except ’.’ which is used by Find" and Replace to delimit

strings). Therefore use whatever you feel comfortable with. For example, all the following are

equivalent:
L 15-30

L 15 30

L 15,30

The commands are:

<C>ompile

<D>eIete Line Number Range

<F>ind Line Number Range . string . ‘ g

<l>nsert Line Number T

<L>ist Line Number Range

<M>odify Line Number Range

<Q>uit

<R>ep|ace Line Number Range . old . new .

<S>yntax

(The above command summary appears if you type ‘HELP’ when in the Editor). The commands

are explained in detail on the following pages.

EDITOR COMMANDS
DELETE

Deletes one or more lines. Any lines following those deleted are renumbered.

To delete one line:

G-Pascal

16 | P a g e

D line-number e.g.
D 5

would delete line 5.

To delete a range of lines:

D first-line, last-line e.g.
D 10,20

would delete lines 10 to 20.

If you attempt to delete 5 or more lines the Editor will ask you (for example):

Do you want to delete 200 lines ? Y/N

This is in case you meant to delete 20 lines but accidentally tried to delete 200 lines. If you want

the delete to go ahead press ‘Y’ otherwise press any other key.

You do not need to press (RETURN) as well.

INSERT

Inserts new lines into your programs To insert, enter:

I line-number

where ’line-number’ is the line that you want to insert after. To stop inserting just type

(RETURN) when the cursor is over a blank line (or a line containing only the line number).

Usually this means just press RETURN before typing in anything.

To insert a blank line enter SHIFT/SPACE and then press RETURN.

For example:
I 10

inserts after line 10 (starting at line 11).

The Editor reminds you what line you are currently inserting by displaying its line number at the

start of the line. To put a line at the very start of the program (line 1) enter:
I

To put a line at the end of the program enter:
I 9999

LIST

Lists your program.

To list the whole program: L

To list one line: L line-number

To list a range of lines: L first-line, lnst-line

For example:
L 10

will list line number 10.
L 40, 60

will list lines 40 to 60.

You can temporarily ‘freeze’ your list by pressing the space bar. You can stop the listing

altogether by pressing the RUN/STOP key.

To list without line numbers:

G-Pascal

17 | P a g e

There is a variation of the List command called the ’No—line- number List’ (N for short). It works

the same as List except that line numbers are not displayed on the left. Its intended purpose is

for listing the file when the line numbers would be a nuisance — for example if you use the

editor for non-Pascal uses such as producing a letter or a name and address list. The ‘N’

command does not appear on the command summary.

For example:
N 100-500

would list lines 100 to 500 without line numbers.

MODIFY

Allows you to change one or more lines in your program.

To change one line: M line-number

To change a range of lines: M first-line, last-line

Modify works by:

a. listing the line or lines requested.

b. deleting the lines requested.

c. entering Insert mode so that you can replace them.

Like the Delete command, Modify will warn you if you are about to change more than 4 lines.

The intention is that tor making minor changes to small numbers of lines you use the ‘cursor

control’ keys to move the cursor over the erroneous lines, making corrections where necessary.

Once a line is corrected just press RETURN to copy the corrected line back into the program. The

cursor does not have to be at the end of the line - anywhere on the line will do.

COPYING AND MOVING LINES

The Insert command can be used to copy or move text from one part of the program to another (in

groups of up to 20 lines). The method of doing this is:

a. List the lines to be copied/moved.

b. Enter ‘Insert’ mode at the point where the lines are to be copied or moved to.

c. Move the cursor to the start of the lines listed (in (a) above) using the upwards cursor control

key.

d. Press RETURN to copy that line into the new spot. It more than one line is to be copied keep

pressing RETURN until all the desired lines are copied. Then leave Insert mode by positioning the

cursor over a blank line and pressing RETURN (an easy way to do this is to press

SHIFT/CLEAR/HOME and then RETURN).

e. Delete them from the old place in the program if desired. (Warning they may have different line

numbers now it you inserted before them.)

To move or copy larger blocks of code (hundreds of lines) you can use the ‘append’ command in the

file menu - just save to disk or cassette a temporary file containing the code to be moved and then

append it back into the right spot.

FIND

G-Pascal

18 | P a g e

The Find command is a powerful method of quickly locating a string of text within your program.

By ‘string’ we just mean a sequence of characters.

For example - to find the start of every procedure in your program:

F.procedure.

As the editor finds each line containing the word ‘procedure’ (in this example) it displays that

line with its line number. When it has finished it displays the total number found.

The Find command can also be used on a range of lines (or a single line) by specifying a line

range in the usual way:

F first-line, last-line . string . options

For example:
F 100-200.begin.

The string delimiters must be the symbol, they must both be present, and directly follow the

line number range (if present) or the letter ’F’ (if not). Pressing RUN/STOP will abort the Find.

Options on the Find

The second delimiter may optionally be followed by up to three parameters – each

represented by a single letter. They may appear in any order or not at all. The options

are:

T - Translate - this will temporarily translate any lower-case letters in the program to

upper case before comparing them to the specified string. If the ‘T’ option is not used

then the Find will differentiate between ’FRED’ and ’fred’, for example. Since the

compiler considers upper and lower case identical (except inside string literals) then it

may be wise to use the ‘T’ option when checking for how often words occur. If ‘T’ is

used then the string specified in the Find must itself be entered in lower- case.

For example:
F.fred.T

Q — Quiet - this will not display lines which contain the specified string - only the count

at the end of the Find will be displayed. This is useful for just counting the number of

times (for example) the word ‘BEGIN’ occurs without actually listing all the lines which

contain it.

For example
F.begin.q

G - Global - this will search each line in the program for every occurrence of the

specified string, not just the first. The only difference this will make to the Find is that if

a line contains more than one occurrence of the string then the count at the end of the

Find will be different.

For example
F.begin.gtq

REPLACE

The Replace command is a powerful method of quickly replacing a string of text within your

program with another one. By ‘string’ we just mean a sequence of characters.

G-Pascal

19 | P a g e

For example - to replace the first occurrence of the word ’enemies’ on each line with ‘klingons’

just say:
R.enemies.klingons.

As the editor finds each line containing the word ‘enemies’ (in this example) it replaces the first

occurrence on that line with the word ‘klingons’ and then displays the line with its line number.

When it has finished it displays the total number replaced.

The Replace command can also be used on a range of lines (or a single line) by specifying a line

range in the usual way:

R first-line, last-line. old string . new string . options

For example:
R 100-200.fred.nurk.

The string delimiters must be the '.’ symbol, all three must be present, and directly follow the

line number range (if present) or the letter ‘R’ (it not). Pressing RUN/STOP will abort the

Replace.

Options on the Replace

The third delimiter may optionally be followed by up to three parameters – each

represented by a single letter. They may appear in any order or not at all. The options

are:

T - Translate - this will temporarily translate any lower-case letters in the program to

upper case before comparing them to the target string. If the ‘T’ option is not used then

the Replace will differentiate between ‘FRED’ and ‘fred’, for example. See the discussion

under the ‘Find’ command for more details.

Q - Quiet - this will not display lines which have been replaced – only the count at the

end of the Replace will be displayed. This is useful it you know there will be a lot

replaced - and you are sure that you are replacing the right things!

G - Global — this will replace every occurrence of the string on each nominated line -

not just the first - use with discretion. Warning: if you use the ‘Global’ option

indiscriminately and make a program line longer than 88 characters (the maximum the

system can handle) then the Editor will not function correctly. For space reasons there is

no check built in to prevent this happening, so make sure that in the process of

replacing that program lines are kept to a reasonable length.

COMPILE

This starts a compile of your program. It is the same as entering ’C’ from the ‘Main Menu’. See

‘Compiling your program’ for more details.

SYNTAX

G-Pascal

20 | P a g e

This does a ‘syntax check’ of your program (to let you know if it has errors). It is the same as

entering ‘S’ from the ‘Main Menu’. See ‘Compiling your program’ for more details.

QUIT

Typing ‘Q’ leaves the Editor (quits) ret-uming you to the ‘Main Menu’. Typing ‘QF’ takes you

directly to the ‘Files’ menu.

G-Pascal

21 | P a g e

BEGINNER’S GUIDE TO PASCAL

This guide is not intended to be a comprehensive Pascal tutorial, however it will introduce you

to G-Pascal's basic concepts. Try out the examples yourself to become familiar with the

language structure and what the statements do.

General format

Spaces or new lines may freely be used within your program (except in the middle of words or

symbols) to make the program more readable. Upper or lower case characters may be used

interchangeably as the compiler converts everything to upper case internally (except string

constants, e.g. ”fred”).

Comments

Comments may be freely interspersed within your program — they must be enclosed within the

(* and *) symbols. Comments may appear anywhere (except within the middle of a word or

symbol).

Reserved words

Reserved words are those that have a specific meaning to the compiler and must be used in the

correct context. They are shown in this section in upper case in order to distinguish them from

other words. However, they may be entered in lower case in your programs it you wish. In fact,

since all reserved words are ‘tokenised’ by the compiler they will always be displayed in lower

case, regardless of how they are entered.

User-defined words
All words other than reserved words are chosen by the programmer (yourself).

They may be any length (all characters are significant), must start with a letter, and after that

consist of letters, numbers or the underscore character. (The underscore is shown in this

Manual as _ however on the Commodore 64 it looks like a ‘left-arrow’ and is entered by the key

on the top left-hand side of the keyboard.)

All user-defined words must be declared before they are used. ‘Declaring’ a word means telling

the compiler to what use you are putting the word. You do this by using the word in a CONST,

VAR, PROCEDURE or FUNCTION declaration.

GENERIC WORDS

In this section of the Manual ’generic’ words are entered in italics.

For example, the definition of an IF statement is:
IF expression THEN statement ELSE statement

In this case the words expression and statement are neither reserved words or user defined

words. Instead they indicate that they are to be replaced with a valid expression or statement as

appropriate, referring to other parts of this Manual for the correct construction of expressions

and statements.

If an ellipsis (...) is used it indicates that the preceding syntactical item may be repeated (usually

indefinitely). Exactly what part may be repeated is usually obvious from the context or the

examples following. For example, the definition of a compound statement is:

G-Pascal

22 | P a g e

BEGIN statement; statement END

In this case zero or more statements may appear between the BEGIN and the END. If more than

one statement appears, they are separated by semicolons.

PROGRAM
A G-Pascal program consists of a ‘block’ followed by a period. A block is explained below. For

example, a simple program is
BEGIN

 WHITE ("Hello")

END.

BLOCK

A block consists of the following:

CONST constant-declarations

VAR variable-declarations

PROCEDURE }

} procedure and function declarations
}

FUNCTION

BEGIN statements END

The ‘declarations’ are all optional, however if used they must appear in the above order. Since a

valid statement is a ‘null’ statement (i.e. nothing) then the minimum block is:
BEGIN END

CONST
The constant declarations are used to assign a name to a constant, that is, a value that will not

change during the execution of the program. The form of the constant declaration is:

CONST identifier = constant;

For example:
CONST

 cr = 13;

 clearscreen = 147;

 numberofplayers = 2;

 true = 1;

 false = 0;

 on = true;

 off = false;

As in the above example, a constant declaration can use an identifier which has already been

declared as a constant (e.g. on = true;).

VAR

G-Pascal

23 | P a g e

Variable declarations are used to name the variable data. Variables are either INTEGER or CHAR

type, and may optionally be an array. Multiple variables of the same type may be separated by

commas. This is the general format of variable declarations:

VAR list-of-identifiers : INTEGER;

list-of-identifiers : CHAR;

list-of-identifiers : ARRAY [array-size] OF INTEGER;

list-of-identifiers : ARRAY [array-size] OF CHAR;

The list-of-identifiers consists of one or more variable names, separated by commas.

The array-size is expressed as the maximum occurrence number of that array item. Arrays start

at subscript zero, so that when you say ARRAY [10] you are referring to an array of 11 items,

numbered 0 to 10.

Some examples:

VAR a, b, c, d, e, f : INTEGER;

 enemystrength,

 enemysize,

 enemydexterity : ARRAY[10] OF INTEGER;

 inputline : ARRAY[80] OF CHAR;

 ch : CHAR;

 amount1, amount2,

 amount3, amount4

 : INTEGER;

INTEGER variables are three bytes long each (in other words, three bytes of memory are

reserved by the compiler for the contents of each variable or array element in the case of

INTEGER arrays). This means that INTEGER variables can contain a number in the range -

8388608 to +8388607. (In hexadecimal the range is: $0 to $FFFFFF). Integer variables can also

hold up to a three—byte ‘string’ of characters,

for example: "hi" or “ZZZ”.

CHAR variables are one byte long each. This means that CHAR variables can contain a number in

the range O to 255 (hexadecimal $0 to $FF). They can also contain a single character string, for

example: ”b” or "5".

The Compiler does not carry out ‘type-checking’ so that INTEGER and CHAR variables can

generally be intermixed in expressions and elsewhere without problem. However, normally

INTEGER variables are used to hold numbers, and CHAR variables are used to hold characters,

particularly arrays of characters.

If the result of an expression is stored in a CHAR variable and the result exceeds 255 (the

maximum that it can hold) then the result is truncated - only the low-order byte is stored.

Mathematically this means that the result stored is the number modulus 256.

G-Pascal does not support other data types, nor the TYPE declaration. However, see the section

‘Converting from other Pascals’ for hints on how to simulate other data types in G-Pascal.

G-Pascal

24 | P a g e

PROCEDURES and FUNCTIONS
Procedures and Functions are ‘subroutines’ which may be called later on in the program to

achieve a specific purpose. The format of Procedure and Function declarations is identical. The

difference between them is that functions return a value, and thus form part of expressions

(explained later), whereas procedures do not return a value, and do not form part of

expressions. The format of procedure and function declarations is:
PROCEDURE procedure-name (argument-list); block ;

FUNCTION function-name (argument-list); block;

The ‘(argument-list)’ is Optional, however if used it consists of one or more arguments,

separated by commas, inside parentheses. These are known as ‘formal arguments’. In the body

of the procedure or function the formal arguments are used as if they had occurred in a VAR

declaration (of type INTEGER), although in fact no declaration is needed for formal arguments.

During the execution of the program, when the procedure or function is invoked arguments are

supplied (the actual arguments) - copies of these are then used by the procedure or function.

For example, a function to double a number would have one argument (the number which is to

be doubled) - the value returned by the function would be the double of the formal argument.

(See example below).

You will note that the definition of a procedure or function declaration includes a ‘block’,

whereas procedure and function declarations are themselves an (optional) part of a block. This

is known as a recursive definition. ln other words, a block may contain a procedure declaration

which itself contains a block, which in tum may contain another procedure declaration and so

on. This means that procedures and functions may themselves contain CONST, VAR,

PROCEDURE and FUNCTION declarations.

lf the procedure or function contains its own VAR declarations then these are known as ‘local’

variables as they can only be referred to inside the procedure or function in which they are

declared. Outside the procedure or function they have no meaning and may not be referred to

(this is referred to as the ’scope’ of that declaration). It is good programming practice to use

local variables for data that is not needed outside the procedure or function, such as loop

counters, flags and so on. This avoids possible unintentional conflict with other variables used

elsewhere. The values of local variables are lost when the procedure or function in which they

are declared is exited. That is, when a procedure or function is invoked the contents of all of its

local variables are not defined - they are not retained from any previous invocation. They may

only be used while the procedure or function is active, and are discarded when the end of the

procedure or function is reached.

Examples of Procedures and Functions

Here are some examples of procedure and function declarations:
PROCEDURE CLEARSCREEN;

CONST HOME = 147;

BEGIN (* PROC PRINTSCREEN *)

 WRITE (CHR (HOME));

END ; (* OF CLEARSCREEN *)

G-Pascal

25 | P a g e

PROCEDURE PRINTDOUBLES (FIRSTNUMBER, LASTNUMBER);

VAR NUMBER : INTEGER ;

FUNCTION DOUBLE(X);

BEGIN

 DOUBLE := X * 2;

END ;

BEGIN

 FOR NUMBER := FIRSTNUMBER TO LASTNUMBER DO

 WRITELN (NUMBER, " TIMES 2 IS ", DOUBLE(NUMBER));

END ; (* PRINT DOUBLES *)

BEGIN (* MAIN PROGRAM *)

 CLEARSCREEN;

 PRINTDOUBLES(20, 130);

END . (* OF MAIN PROGRAM *)

{{ Available on disk as demo proc 01}}

The above example, as well as illustrating procedures and functions, is a complete program

which you may want to key in and try for yourself. Note that the function ‘double’ is declared

within the procedure ’printdoubles’. This is an example of a ‘nested’ function. Procedures and

functions may be nested indefinitely. Notice the different way that procedure and functions are

invoked (called). Procedures are invoked by naming them as a statement. The main program

above in fact merely consists of two procedure invocations. Functions however are invoked by

naming them as part of an ‘expression’ - in this case the function ‘double’ forms a part of the

WRITELN statement.

The function ‘double’ also illustrates how a function can use its parameters (arguments) in a

calculation. When ’double' is called it is passed the parameter ‘number’ i.e. double (number)). A

copy of the value contained in ‘number’ is made and passed to ‘double’ which then considers it

to be its argument ‘x’. ‘x’ is then multiplied by two and assigned to the name of the function,

which is the way that the function returns its result to the part of the program that invoked it.

(i.e. double := x * 2).

Recursive Procedures and Functions

Procedures and functions can also invoke themselves recursively which can sometimes be

useful. For example, here is a way of calculating factorials by recursion:

VAR number : INTEGER;

FUNCTION factorial (x);

BEGIN

 lF x = 1 THEN

 factorial := x

 ELSE

 factorial := x * factorial(x - i)

G-Pascal

26 | P a g e

END; (* factorial *)

BEGIN (* main program *)

 FOR number := 1 TO 10 DO

 WRITELN (number, "! = “, factorial(number))

END.

{{ Available on disk as demo func 01 }}

The example above is also a complete program which you may wish to try for yourself. The

function ‘factorial’ keeps calling itself (recursing) until it can go no further (1 factorial is 1). There

are other ways of calculating factorials but this example illustrates recursion quite well.

A factorial of an integer is the product of all the integers from 1 to itself. e.g.

4 factorial, which is represented mathematically as 4!, is 4 * 3 * 2 * 1, which is 24.

5 factorial is I20 and so on.

STATEMENTS

The parts of the program (or block) that ‘do something’ are the statements. The beginning of

the statements part of a block is signalled by the word BEGIN and the end by the word END. Like

the definition of a block, the definition of a state ment is recursive - that is, some statements

may contain other statements. The simplest example of this is the ‘compound statement’. A

compound statement looks like this:

BEGIN

statement; statement; statement

END

In other words, wherever a statement is allowed, the word BEGIN may be placed, followed by

any number of statements separated by semi- colons, followed by the word END. For example,

the definition of an IF statement is as follows:

IF expression THEN statement ELSE statement

The following examples are valid IF statements:
IF x = 3 THEN

 b := 5

ELSE

 b := 10;

IF word = “abc" THEN

 BEGIN

 a := 1;

 b := 2

 END

ELSE

 BEGIN

G-Pascal

27 | P a g e

 a := 5;

 b := 10

 END;

Null statements
A valid statement is the ‘null’ statement (in other words, nothing). So the following is also a valid

(although rather meaningless) IF statement:
IF a = 21 THEN ELSE;

The absence of any symbols between the THEN and the ELSE and also after the ELSE indicates

the null statement. In other words, nothing will happen. Occasionally this is useful - for example,

during debugging you may temporarily convert a statement to comments (by enclosing it in (*

and *) - this will have no ill effect.

We now summarise the various G-Pascal statement formats, with a brief description of their purpose.

Assignment statement

variable := expression

The assignment statement evaluates the expression (expressions are explained later) and places

the result in the named variable. e. g.
A := B * 25;

Procedure invocation

procedure-name (expression, expression)

By naming a previously defined procedure you invoke it — that is, transfer control to the

procedure to carry out the statements defined within that procedure’s declaration. If the

procedure declaration contained a list of formal arguments then the actual values to be passed

to that procedure are now supplied in the form of a list of expressions, separated by commas, all

in parentheses. e.g. PLAYANOTE (PITCH, DURATION); If no arguments are required then the

parentheses are not required.

e. g. NEXTGAME;

IF

IF expression THEN statement ELSE statement

The expression is evaluated. If it is true (not zero) then the first statement is executed, if it is

false (zero) then the second statement is executed. The ‘ELSE statement’ clause is optional.

(Example previously).

ELSE CLAUSE
The ELSE clause may be used with the IF statement, in which case it is always associated with

the most recent un-ELSE-ed IF. The ELSE clause may also be used with the CASE statement to

cause a statement to be executed if none of the labels agree with the case selector.

G-Pascal

28 | P a g e

WHILE
WHILE expression DO statement

The expression is evaluated. If it is true (non-zero) the statement is executed. This process is

repeated until the expression becomes false (zero). e.g.

x := 0;

WHILE x < 10 DO

BEGIN

 x := x + 1;

 WRITELN (x," squared is ",x * x)

END

REPEAT
REPEAT statement ; statement UNTIL expression

The statements between REPEAT and UNTIL are executed. Then the expression

is evaluated. If it is false (zero) this process is repeated. e.g.
REPEAT x:= x + 1; y := y + 5 UNTIL x = 50

Or as block construct.
REPEAT

 X := x + 1;

 y := y + 5

UNTIL x = 50

CASE
CASE expression OF

 label-listl : statement1;

 label-Iist999 : statement999

ELSE statement

END

The expression is evaluated. This is called the ‘case selector’. It is then compared in turn to the

lists of expressions (labels) preceding each statement. If it matches one of them then the

statement following the colon is executed and the CASE statement terminates. If no label

matches the selector then the statement following the ELSE is executed. As in the IF statement

the ELSE clause is optional. The label list consists of one or more expressions, separated by

commas. This is an extension of standard Pascal which only allows a list of constants.
CASE actionnumber OF

 1 : processactioni;

 2, 3, 4 : processactions234;

 5, 6 : processactions56

ELSE processerroraction

END

The END is part of the CASE statement and should not be confused with the normal BEGIN END

pairs normally found elsewhere in Pascal.

Here is an example of using expressions in a CASE statement:

G-Pascal

29 | P a g e

CASE true OF

 (x > 0) AND (x < 10) : smallx;

 (x >= 10) AND (x < 100) : mediumx;

 x >= 100 : largex

ELSE toosmallx

END

WRITE and WRITELN
WRITE (output-list)

WRITELN (output-list)

WRITELN

WRITE and WRITELN function identically except that WRITELN automatically writes a ‘carriage

return’ at the end of the output- list. In other words, at the end of a WRITELN the cursor (or

printer if printing) commences a new line. WRITELN without any arguments just writes a

carriage return.

The output list is evaluated and written to the screen. The output list consists of one or more of:

expressions, string constants, or the special functions HEX and CHR, separated by commas.

String constants are written ‘as is’, e.g. WRITE (*hello”) would display the word ‘hello’ on the

screen. If you want the quote symbol to appear in the string itself then two consecutive quotes

should be used. For example, to display: MY NAME IS "SUE" you would enter: WRITELN ("MY

NAME IS ""SUE""").

If an expression is written on its own it is evaluated and the result displayed as a decimal

number. e. g. WRITE(5 * 6) would display '30’ on the screen.

To write ‘screen control’ codes (such as clear screen, shift to upper-case and graphics and so on)

the number should be written as: CHR (x) where x is an expression. E.g.

WRITELN (CHR(147)) would clear the screen.

This is the same as: PRINT CHR$(147) in Commodore Basic.

To write a number in hexadecimal the number should be written as: HEX (x) where x is an

expression. e.g.
WRITE (HEX(10))

would display ’00000A’.

The functions HEX and CHR are only meaningful within a WRITE or WRITELN statement.
WRITELN (65," in hex is ",hex(65)," and in ascii is ", chr(65));

READ
READ (input-list);

The input list consists of a list of one or more variables, separated by commas. Each item in the

list is treated separately, as if they had appeared in separate READ statements. There is no built-

in method of accepting a list of numbers from one line of input, although you could write a

procedure to do this by accepting a string and decoding it as desired. The effects of the various

types of input-list variables are as follows:

G-Pascal

30 | P a g e

a) Variable of type CHAR - a single character is accepted from the keyboard and placed in

the named variable. The system does not wait for the RETURN key to be pressed. The

character is not echoed on the screen.

b) Array of type CHAR with no subscript supplied - a line of input is accepted from the

keyboard and placed in the named array, starting at subscript zero. The line is echoed

on the screen as it is typed in, and the normal cursor control keys may be used to edit

the line prior to the RETURN key being pressed. If the line entered is smaller than the

array size then a RETURN symbol will appear in the array (i.e. the value 13) after the last

character entered. Warning - the Commodore 64's full-screen editor will cause text on

the screen to the right of the cursor to be considered part of the input, even if it wasn't

actually typed in at that time. This means that a ‘default’ answer can be displayed and

the cursor positioned to the start of it. If the user just presses RETURN then the text to

the right of the cursor will be returned automatically.

c) Variable of type INTEGER - a line of input is accepted from the keyboard. The line is

echoed on the screen as it is typed in, and the normal cursor control keys may be used

to edit the line prior to the RETURN key being pressed. After RETURN is pressed an

attempt is made to interpret it as a decimal number and place the result in the named

variable. The first character must be a number or minus sign, the following characters

must be numbers, until the RETURN is pressed. If these conditions are not met the built-

in function INVALID is set true, otherwise (if the number is OK) INVALID is false. Warning

- the Commodore 64’s full-screen editor will cause text on the screen to the right of the

cursor to be considered part of the input, even if it wasn’t actually typed in at that time.

This means that a ‘default’ answer can be displayed and the cursor positioned to the

start of it. If the user just presses RETURN then the text to the right of the cursor will be

returned automatically.

d) Variable of type INTEGER followed by a $ symbol. A line of input is accepted from the

keyboard. The line is echoed on the screen as it is typed in, and the normal cursor

control keys may be used to edit the line prior to the RETURN key being pressed.

After RETURN is pressed an attempt is made to interpret it as a hexadecimal number

and place the result in the named variable. The numeric string input must be from 1 to 6

hexadecimal digits for the attempt to succeed. If the number is not recognized as a

hexadecimal number then the built-in function INVALID is set to true, otherwise (if the

number is OK) then INVALID is false.

Some examples:
VAR

 INTNUM, HEXNUM, K: INTEGER ;

 SINGLE : CHAR ;

 SLINE : ARRAY [80] OF CHAR ;

BEGIN

 WRITE (CHR (147));

 WRITE ("ENTER NUMBER ");

 READ (INTNUM);

 IF INVALID THEN

G-Pascal

31 | P a g e

 WRITELN ("BAD NUMBER!")

 ELSE

 WRITELN ("NUMBER IS ", INTNUM);

 WRITELN ; (* BLANK LINE *);

 WRITE ("ENTER HEX ");

 READ (HEXNUM $);

 IF INVALID THEN

 WRITELN ("BAD HEX NUMBER!")

 ELSE

 BEGIN

 WRITELN ("AS INT ",HEXNUM);

 WRITELN ("AS HEX ", HEX (HEXNUM));

 WRITELN ("AS CHR ", CHR (HEXNUM));

 END ;

 WRITELN ;

 WRITE ("ENTER SINGLE CHAR ");

 READ (SINGLE); (* READ 1 BYTE *);

 WRITELN ; (* BLANK LINE *)

 WRITELN ("AS INT ", SINGLE);

 WRITELN ("AS HEX ", HEX (SINGLE));

 WRITELN ("AS CHR ", CHR (SINGLE));

 WRITELN ;

 WRITE ("ENTER STRING ");

 READ (SLINE);

 WRITELN ;

 WRITE ("LINE IS "); (* read a line into an array *)

 K := 0;

 (* LOOP THROUGH ARRAY UNTIL *)

 (* CARRIAGE RETURN CHR 13 IS *)

 (* DETECTED *)

 WHILE SLINE[K] <> 13 DO BEGIN

 WRITE (CHR (SLINE[K]));

 K := K + 1;

 END ;

 WRITELN ;

 WRITELN ("LENGTH ", K);

END .

{{ Available on disk as file demo read 01 }}

Sample Output (entering a ‘w’ as the single char)

G-Pascal

32 | P a g e

FOR

FOR variable := expression] TO expression2 DO statement

Expression 1 is evaluated and assigned to the variable. It is then compared to

expression2. If it is less than or equal to expression2 then the statement is executed.

Then 1 is added to the variable, and it is compared to expression2 again and so on, until

the variable is greater than expression2.

FOR variable := expressionl DOWNTO expressi0n2 DO statement

Expressionl is evaluated and assigned to the variable. It is then compared to

expression2. If it is greater than or equal to expression2 then the statement is executed.

Then one is subtracted from the variable, and it is compared to expression2 again and

so on, until the variable is less than expression2.

For example:
FOR j := 1 T0 20 DO

 WRITELN (j);

FOR k := 100 DOWNTO 20 DO

 WRITELN (k)

CALL
CALL (expression)

The CALL statement transfers control to the machine-code subroutine located at the address

which the expression evaluates to. For example, to call the ‘close all files’ routine in the Monitor

Kernal (at address $FFE7) you would say:
CALL ($FFE7);

lt is possible to set up the A, X, Y registers and condition codes before the CALL and examine

them after the CALL See the section on ‘Machine Language Subroutines’ for more details.

Other statements

G-Pascal

33 | P a g e

There are other statements with specialized uses which are G- Pascal extensions for the

Commodore 64, which control the cursor, graphics, sound effects, clock etc. These are described

in more detail in other sections of this Manual.

EXPRESSIONS
An expression (or ‘arithmetic expression’) forms part of the definition of many statements, as

seen previously. For example, an assignment statement assigns the result of the evaluation of an

expression to a variable. Like the definitions for a block and a statement, the definition of an

expression is recursive, that is, an expression can contain another expression. Expressions

consist of a combination of operands and operators. e.g.
5

A < 2

(a * b / c) + 14

Operands
array-name [index-expression]

constant

function-name

function-name (argument-list)

variable

(expression)

Operators
(ln decreasing order of precedence):

NOT

* / DIV MOD AND SHL SHR

+ - OR XOR

= <> < > < = > =

Precedence controls in which order the expression is evaluated. Since * is on a higher

precedence than + then the expression:
5 + 8 * 10

evaluates to 85, not 130, since the multiplication is done before the addition. Where operations

of equal precedence are presented then they are evaluated from left to right. Since the

operators AND and OR are on a higher precedence than the relational operators (=, <, > and so

on) then conditional expressions generally require parentheses around expressions combined by

AND and OR.

For example:
IF (a > 5) OR (b < 10) THEN

If the parentheses were omitted G-Pascal would evaluate ’5 OR b’ before doing the relational

tests, which would probably not have the desired result.

MEANING OF OPERATORS
NOT

G-Pascal

34 | P a g e

NOT reverses the value of a boolean operand. Unlike all other operators which are inserted

between two operands (e.g. in the expression: 4 + 6 the operator ’+’ comes between the ’4' and

the ‘6’), NOT precedes a single operand. lf its operand is true (non-zero) then NOT makes it false

(zero). lf its operand is false (zero) then NOT makes it true (1). e.g.
REPEAT game UNTIL NOT alive;

* (asterisk)

* (asterisk) is the symbol for multiplication. It multiplies two numbers together. e.g.
salary := wage * 52;

/ and DIV

/ and DlV are synonymous and are the symbols for division. They result in integer division. (If the

division cannot be performed exactly then the remainder is discarded). e.g.
inches := feet / 12;

The remainder of a division can however be established with the MOD operator.

MOD

MOD returns the remainder of a division (often known as the modulus - hence

its name). e.g.
diceroll := RANDOM MOD 6 + 1;

AND

AND performs a boolean ‘and’ of each of the 24 bits in the two operands. That is, a result bit is

on only if both corresponding bits in the operands are on. The normal use for AND is in the

conventional sense of checking that two conditions are true simultaneously, however it can also

be used to ‘mask’ out unwanted bits in an integer. e.g.
IF (a > 4) AND (b < 5) THEN (* check both conditions are true *)

IF PADDLE (2) AND $FF THEN (* isolate low order byte *)

SHL

SHL performs a ‘shift left’ operation. lt takes the first operand and shifts it left the number of

bits specified in the second operand (maximum of 24 shifts). Each shift left is equivalent to

multiplying the first operand by 2, so SHL is a simple and quick way of raising a number to a

power of 2. For example, to multiply a number by 2 to the power 6:
result := number SHL 6;

SHR

SHR performs a ’shift right’ operation. It takes the first operand and shifts it right the number of

bits specified in the second operand (maximum of 24 shifts). Each shift right is equivalent to

dividing the first operand by 2, so SHR is a simple and quick way of dividing a number by a

power of 2. For example, to divide a number by 2 to the power 6:
result := number SHR 6;

+ (Plus)

+ is the symbol for addition. It adds its two operands together. e.g.

G-Pascal

35 | P a g e

result := a + b;

- (Minus)

- is the symbol for subtraction. It subtracts the second operand from the first. e. g.
klingons := klingons -1;

OR

OR performs a boolean inclusive ‘or’ of each of the 24 bits in the two operands. That is, a result

bit is on if either or both of the corresponding bits in the operands are on. The normal use for

OR is in the conventional sense of checking that either of two conditions are true, however it

can also be used to ‘turn on’ certain bits in an integer. e.g.
IF (a > 4) OR (b < 5) THEN (* check either condition is true *)

mask := mask OR 1; (* turn on low order bit *)

XOR

XOR performs a boolean exclusive ‘or’ of each of the 24 bits in the two operands. That is, a

result bit is on if either of the corresponding bits in the operands are on but not both. XOR is a

G-Pascal extension and is less likely to be used than OR, however one important use for XOR is

for toggling a bit - that is, turning it off if it is on, or tuming it on if it is off. This can be useful

when defining your own character sets - the ‘inverse’ of any character can be obtained by

XORing the character with $FF. This will switch any 1's to 0's, and any 0's to 1's. e.g.
b := b XOR 1; (* toggle contents of b ')

byte := byte XOR $FF; (* invert contents oi byte ")

= <> < > <= >=

The above symbols are all ‘relational operators’. That is, they return a boolean value (true or

false) depending on whether or not the relation is true. The result of a relational operation will

always be zero (false) or 1 (true). Relational operators are usually used in IF, WHILE or REPEAT

statements, however they can be used anywhere that an expression is permitted. e. g.
IF ships < 3 THEN

IF answer = 6 THEN

 result := b >= 4;

G-Pascal

36 | P a g e

NOTES ON THE COMPILER

ARRAYS

Single dimension arrays only are permitted. It multi-dimensional arrays are needed it is easy to

write functions to simulate them. For example, if you want an 8 by 15 array, declare your array

as having 120 elements (8 times 15) and write a function that multiplies the first subscript by 8

and adds the second subscript. That way each combination of subscripts ‘maps’ onto a unique

element.

Subscripts must be enclosed within square brackets ([and]). These are located above the colon

and semicolon (: and ;) on the Commodore 64 keyboard.

Range checking of arrays

No range checking is carried out on any arrays. This means that if you declare an array of 10

items and write to the 11th upwards, or to the -1st downwards then you will ’clobber'

something unexpected. This may cause your program to ‘crash’ or behave strangely, or quite

possibly the entire G-Pascal system may crash.

Part of the reason for this is that ’return’ addresses for procedure or function calls, and also

‘stack frame addresses’ are stored on the stack, right next to your variables. Therefore if an an-

ay is defined as the first variable within a procedure or function then exceeding the bounds of a

declared array by just one element could make the procedure or function lose track of where to

return to. If you think an array variable may exceed its declared bounds build a check into your

program to make sure it doesn't.

Array allocation

Arrays are allocated downwards in memory. This is important it you are storing a machine

language program in an array, for example. In a given array, the highest array element has the

lowest memory address.

‘PROGRAM’ STATEMENTS

Programs do not start with the word PROGRAM. A program must start with one of: CONST, VAR,

PROCEDURE, FUNCTION or BEGIN. Failing this, the error message ’BEGlN expected’ will appear.

CONSTANTS

Constants (a constant is a factor in an expression that does not change throughout the execution of

a program) can be expressed in one of four ways interchangeably:

1. Decimal constants: for example: 1096, -33, +99.

Decimal constants are simply signed numbers to the base 10. They may range from -8388608 to

+8388607.Warning - since the compiler interprets a plus or minus sign directly in front of a

number as being the ‘sign’ of that number (e.g. -5) then when using plus or minus signs for

arithmetic (addition and subtraction) then at least one space must follow the sign if the next

symbol is a number.

In other words:
a := b+1;

G-Pascal

37 | P a g e

Would give an error because the ’+’ would be interpreted as the sign of ‘1’, not an addition

operation. The correct way to represent the above would be:
a := b + 1;

2. Hexadecimal constants, for example: $A1, $FFC.

Hexadecimal constants are unsigned numbers to the base 16. They may range from $0 to

$FFFFFF. The ’$’ is required.

3. String constants, for example: ”Z”, “NO”, “YES”.

String constants are a string of between one and three characters, enclosed in quotation marks.

If only one or two characters appear in the string then the high~order byte/s are set to zero.

Therefore when comparing to, or moving to or from, a CHAR type variable only one character

should appear between the quotes as CHAR variables are only one byte long. The use of two or

three character string constants would primarily be restricted to applications which involve a lot

of ‘word’ work, such as Adventure-type

games or other applications which involve three letter commands.

A string constant "abc” will be stored as:

“a” + “b” * 256 + “c” * 65536

or in other words:
"a" OH “b” SHL 8 OR “c” SHL 16

4. Identifiers which appear in a CONST declaration.

For example, if the declaration: CONST cr = 13; appears in the program then ’cr’ is considered to

be a constant. The use of CONST declarations for constants is highly recommended as they make

the program much more readable and easy to follow. For example: WRITE (chr(147))

and WRITE (chr(clearscreen)) will both clear the screen (if ‘clearscreen’ is declared to

be equivalent to 147 in a CONST declaration) but the latter makes the intention much clearer

when reading the program.

DATA TYPES
Integer

Integers are stored as 3-byte signed numbers and therefore range from -838B608 to 8388607.

Char

CHAR type variables are stored as one byte each. No type checking is carried out by the compiler

so in fact INTEGER and CHAR variables may be used completely interchangeably in G-Pascal,

except:

a) CHAR variables have a different meaning to integer variables in the READ procedure.

b) The result of an expression stored in a CHAR variable will be MOD 256 (that is only the low

order byte will be stored — the high order two bytes will be discarded). Therefore a CHAR

variable will always be in the range of 0 to 255 (or $0 to $FF).

c) CHAR variables only use one third the amount of memory to store as integers — particularly

important in big arrays.

Other data types

G-Pascal

38 | P a g e

Other data types are not supported, nor is the TYPE statement. (But see ‘Converting from other

Pascals’ for hints on how to simulate other data types in G-Pascal).

MEM ARRAY
(read this if you like peeking/pokeing)

The MEM array is a pre-defined integer array starting at address zero.

For example:
FRED := mem [$5000];

would place in FRED the 3 bytes in memory, starting at address $5000;

or:
mem [$5000] := $ABCDEF;

would store SABCDEF in memory addresses $5000 to $5002.

Cautions:

1. Careless use of MEM as a receiving field (as in the second example) could ‘crash’ your G-

Pascal system or destroy your program. Use with care!

2. Use of absolute addresses via MEM and MEMC makes your programs machine-

dependent and not portable.

3. The subscript of the MEM array is always interpreted as an absolute address so that

MEM [0] and MEM [1] in fact overlap by two bytes – they both share addresses 1 and 2.

This is unlike ordinary integer arrays where each ‘occurrence’ represents an address 3

bytes away from its neighbour.

MEMC ARRAY
The MEMC array is a pre-defined CHAR array starting at address zero. Use MEMC for

peeking/pokeing single bytes.

ADDRESS
The run-time address of a variable can be established by the ADDRESS (identifier) function. For

example, to find the address in memory of FRED:
J := ADDRESS (FRED);

The ADDRESS function would only be of interest to more experienced programmers tor special

purposes such as calling machine code routines contained within an array, or passing the

address of a variable to a procedure. It is unique to G-Pascal and therefore not portable.

LOAD
The LOAD statement will load a file from disk or cassette under program control. The LOAD

statement takes the following form:
LOAD (device, address, flag, filename);

The ‘device’ represents the device number which is 1 for cassette and 8 for disk. The ‘address’ is

the address to which the data is to be loaded. The ‘flag’ is 0 for a Load and 1 for a Verify. The

’filename’ is a string containing the filename. After the load, the built-in function INVALID should

G-Pascal

39 | P a g e

be checked. If it is zero then the load was OK. It it is non-zero then INVALID contains the error

code. e.g.
LOAD (8, $1000, O, “FILEA");

IF INVALID THEN WRITELN (“ERROR", INVALID , “ON LOAD");

SAVE
The SAVE statement will save a file to disk or cassette under program control.

The SAVE statement takes the following form:
SAVE (device, start-address, end-address, filename);

The ’device' represents the device number which is 1 for cassette and 8 for disk.

The ‘start-address’ is the start address from which the data is to be saved.

The ‘end-address’ is the end address of the block of data to be saved. The ’filename’ is a string

containing the filename.

If the start address is greater than or equal to the end address a run-time error will occur.

After the save, the built-in function INVALID should be checked. If it is zero then the save was

OK. If it is non-zero then INVALID contains the error code.

e.g.
SAVE (8, $1000, $1800, "FlLEA");

IF INVALID THEN WRITELN ("ERROR ",lNVALlD, " ON SAVE");

SAVE may be used to save a block of variables from a program so that they can be loaded back

again later on (for example, saving the current position in an adventure game). In this case

remember that variables are allocated downwards on the stack, so that the lowest memory

address is in fact the last variable declared. The safest way of doing this is to declare two

‘dummy’ variables to pinpoint each end

of the variable data, like this:
var firstvar : char; (* 1st prog var — highest address *)

 a,b,c,d,e,f : integer; (* all prog vars go here *)

 i,j,k,l,m : char;

 (* and so on *)

 lastvar : char; (* last prog var — lowest address *)

begin

 save (8, address(lastvar), address(firstvar), "varfile");

 load (8, address(lastvar), 0, "varfile");

end.

Of course, this technique will only work if the number of variables is the same between

the SAVE and the LOAD, in other words, if the data declarations in the program are the

same.

GETKEY
GETKEY is a function that indicates whether or not a key is being pressed on the keyboard (or is

in the keyboard queue). If no key is currently being pressed it returns zero - if a key is being

pressed it returns a value corresponding to that key.

G-Pascal

40 | P a g e

To make a program wait until any key is pressed for example just say:
REPEAT UNTIL GETKEY;

However if you need to know what the value of the key is then it must be saved in a temporary

variable. e.g.
REPEAT

 KEYVALUE := GETKEY;

UNTIL KEYVALUE;

CASE KEYVALUE OF (* and so on *)

Normally you would use the READ statement if you want to wait until a key is pressed. GETKEY is

intended for applications where the program wants to occasionally check for keys being pressed

on the keyboard but do other things in the meanwhile if they are not.

ABS (value);
The built-in function ABS returns the absolute value of its argument. In other words, ABS will

always return a positive result, whether or not the argument is positive. This can be handy for

establishing the distance between two points, regardless of which one is greater than the other.

e.g.
distance := ABS (x1 — x2);

G-Pascal

41 | P a g e

SAMPLE PROGRAMS

Sieve Prime Number
(* ERATOSTHENES SIEVE PRIME NUMBER GENERATOR %L *)

CONST

 SIZE = 1000;

 TRUE = 1;

 FALSE = 0;

 HOME = 147;

 PERLINE = 5;

VAR FLAGS : ARRAY [SIZE] OF CHAR;

 l,PRlME,K,COUNT,ONLINE : INTEGER;

BEGIN

 COUNT := 0;

 WRITELN (CHR(HOME));

 ONLINE := 0;

 FOR l := 0 TO SIZE DO

 FLAGS [l] := TRUE;

 FOR l := 0 TO SIZE DO

 IF FLAGS [l] THEN

 BEGIN

 PRIME:= l + l + 3;

 K := K + PRIME;

 WHILE K < = SIZE DO

 BEGIN

 FLAGS [K] := FALSE;

 K := K + PRIME

 END;

 IF ONLINE > PERLINE THEN

 BEGIN

 WRITELN (* NEW LINE *)

 ONLINE := 0

 END;

 ONLINE := ONLINE + 1;

 COUNT := COUNT + 1;

 WRITE (PRIME, " ")

 END;

 WRITELN; WRITELN (COUNT, " PRIMES")

 END.

 {{ Available on disk as file demo sample 01 }}

G-Pascal

42 | P a g e

Square root
(* PROGRAM TO DEMONSTRATE HOW TO

 OBTAIN SQUARE ROOTS IN

 G-PASCAL. TO IMPROVE ACCURACY,

 OUTPUT FROM SQRT IS 128 TIMES

 THE ACTUAL RESULT. FOR THE

 CORRECT RESULT. DIVIDE BY 128.

 (OR SHIFT RIGHT 128 TIMES).

*)

VAR

 J, K : INTEGER ;

FUNCTION SQRT(X);

(* ---------------- *)

VAR

 SQ, A, B, I : INTEGER ;

BEGIN

 IF X = 0 THEN

 SQRT := 0

 ELSE

 BEGIN

 X := X SHL 12;

 SQ := ABS (X);

 A := X;

 B := 0;

 I := 0;

 WHILE A <> B DO

 BEGIN

 B := SQ / A;

 A := (A + B) SHR 1;

 I := I + 1;

 IF I > 4 THEN

 BEGIN

 I := 0;

 IF ABS (A - B) < 2 THEN

 A := B

 END

 END ;

 SQRT := A

 END ;

END ; (* SQRT *)

(* ---------------------------- *)

(* MAIN PROGRAM STARTS HERE.

 DISPLAY SQUARE ROOTS OF FIRST

G-Pascal

43 | P a g e

 200 NUMBERS TO 2 DECIMAL PLACES

*)

BEGIN

 FOR K := 0 TO 200 DO

 BEGIN

 J := (SQRT(K) * 100) SHR 6;

 WRITE ("SQRT(",K, ") = ", J / 100, ".");

 IF J MOD 100 < 10 THEN

 WRITE ("0");

 WRITELN (J MOD 100)

 END

END .

{{ Available on disk as file demo sample 02 }}

G-Pascal

44 | P a g e

COMPILING YOUR PROGRAM
Compile

If you select ‘Compile’ from the Main Menu or Editor your program will be compiled and

converted to P-codes, ready for Running. You may select a listing of the program to appear

during compilation, or change the address at which the P-codes are located by using the

Compiler Directives described below. If the compile is successful (no errors) you may

immediately press ‘R’ (for Run) to test your program.

Syntax

The ‘Syntax’ option also compiles your program, however it does not generate P-codes so you

must do a Compile afterwards if you have no errors and wish to run your program. As P-codes

are not generated the %P compiler directive (display P-codes) does not function (acts the same

as %L). In all other respects Syntax and Compile are identical. The main use for ‘Syntax’ is to

check for errors if the P- codes are going to clobber the source code during the compilation

process (this can only happen if the %A compiler directive is used). In this case, use the ‘Syntax’

option to check that the program has no errors, then save it to disk or cassette, then Compile it.

Asterisks

If you do not request a listing an "*" is displayed on the screen as every 32 source program lines

are compiled. This is to reassure you that ‘something is happening’, and give a visual indication

of how fast (and how far) the compilation is proceeding.

Errors

If there is an error in your program the compilation will stop with an arrow pointing to the

symbol being processed when the error was detected (this not necessarily being the actual

cause of the error as such), the word ‘*** Error’ and an English error message. See the section

‘Compiler Error Messages’ for details about the meaning of errors.

COMPILER DIRECTIVES
Compiler directives are special symbols inserted within comments to cause G-Pascal to take

special action during the compilation, such as producing a listing or placing the P-codes at a

different address.

Compiler directives must appear within comments (i.e. after a (* symbol, and before its

corresponding *) symbol) as they are not part of the Pascal language as such.

They consist of the percentage symbol (%) directly followed by a code letter indicating the type

of directive. The code letter may be in upper or lower case. These are described below.

%L (Listing)

The %L directive causes a listing of the program (with the P-code addresses displayed on the left

in parentheses) commencing with the line on which the %L directive appears. The listing is the

same as an Editor List, except for the P-codes on the left. At times knowing the P-code addresses

is useful, particularly when a runtime error occurs (such as Divide by zero). In this case the

G-Pascal

45 | P a g e

address displayed when the run-time error occurs can be used to locate the line in the program

which caused the error.

The %L directive would normally appear in the first line of the program, however it may be

placed further down if only a partial listing is desired. Listing may be turned off with the %N

directive.
(* %L *)

%N (No listing)
The %N directive stops the compiler from listing the program as it compiles. Instead, an asterisk

is displayed as each 32 program lines are compiled. This is the default.
(* %N *)

%P (P-code listing)

The %P directive causes the compiler to list the program, and also to list each P-code that is

generated for each statement. This directive would not normally be used, unless you are

interested in what P-codes are generated for each statement. See ‘Meanings of P- codes’ for a

description of what each P-code means. Like the %L directive %P is cancelled with an %N

directive.
(* %P *)

%A (Address of P-codes)

The %A directive defines where the P-codes are to be placed during the compilation process. It

should be followed by a decimal or hexadecimal address or the error ‘Constant expected’ will

appear.

It is essential that the %A directive appear at the very start of the program, before the first

CONST, VAR, PROCEDURE, FUNCTION or BEGIN. If this is not dune the P-codes will not be

compiled contiguously and a run-time error (or worse) will happen when the program is run.

lf the %A directive is omitted then the P-codes will be placed directly following the end of the

source program. This is the usual and recommended method of compiling. The %A directive

should only be used if the ‘Memory Full’ error appears during compilation (which means that

there is insufficient room at the end of the source program for the P-codes), or when compiling

independent modules.

The address for the P-codes must be chosen with care. The permitted range is $800 (just after

screen memory) to $4000 (overlapping the source program). Outside this range the error

message ‘Number out of range’ will appear. A P-code address of $800 would be sensible for

many applications, however care must be taken that DEFINESPRITE statements and bit-mapped

graphics do not clash with the P-codes. See the ‘Memory Map’ section in this Manual for more

details about what memory addresses may be used for which purpose.

In the event that the P-codes are placed at $4000 (the start of the source program), or just

below, then the compilation process will cause the source program to be replaced by the P-

codes, thus effectively destroying the source program. Under these circumstances it is essential

G-Pascal

46 | P a g e

that the source program be saved to disk or cassette before a Compile, otherwise the source

program will be lost.

As the compiler is a single-pass compiler the technique of ’clobbering’ the source program with

the P-codes is an effective method of making maximum use of available memory, however there

is the inconvenience of having to re-load the program from disk or cassette after each Compile.

Remember that the ‘Syntax’ option is a method of compiling the program without generating P-

codes, and should be used to ensure that there are no compile errors before the final

compilation which does generate P-codes is done.

Examples of the %A option:
(* %A $800 — place P—oodes after screen memory *)

(* %A $4000 — overwrite souroe code with P-codes *)

COMPILER ERROR MESSAGES
If the compiler detects an error in the G-Pascal program it will return one of 36 error messages.

The messages appear in English, as given below. An upwards arrow will point to the symbol

currently being processed when the error was detected. If the compiler has detected the end of

the program unexpectedly the arrow will point to the last symbol in the program (for example if

the final period (.) is missing).

ln some cases the error will be in the symbol that the arrow is actually pointing to (for example,

‘Undeclared Identifier’ or ‘Number out of range’). However in a lot of cases the error will be an

error of omission (For example, the message ’; expected’ usually means that a semicolon has

been omitted from the end of the previous line). ln these cases the error message usually refers

to some problem in the previous statement or clause. Therefore, if the meaning of an error is

not obvious, list and examine carefully the last ten or so lines prior to and including the line

containing the error.

All errors are fatal - in other words as soon as an error occurs the compilation is halted and the

compiler automatically returns to the Editor so that the error can be corrected. As G-Pascal

compiles very rapidly detection and correction of errors is a quick and easy process.

The list of error messages below is intended as a guide to the usual circumstances surrounding a

given error - they should help in understanding a particular error.

As the error messages are in upper and lower case the compiler automatically switches the

character set to upper and lower case before displaying errors.

= expected

The compiler is processing a CONST declaration and is expecting an ‘=’ sign to come between

the constant name and its value. (e.g. CONST TRUE = 1;).

:= expected

The compiler is processing an assignment statement or a FOR statement and is expecting a ’: =’

to follow the variable name. (e.g. K : 1;).

; expected

G-Pascal

47 | P a g e

The compiler is expecting a semicolon. It is probably missing from the end of the previous

statement.

; or END expected

The compiler is processing a compound statement — that is, one beginning with a BEGIN and

ending with an END. It has come to the end of a statement and now expects either a semicolon

followed by another statement, or the word END.

, expected

The compiler is processing a list of arguments and now expects a comma, followed by another

argument. (e.g. CURSOR (6, 7);).

, or : expected

The compiler is processing a CASE statement and is expecting a comma or colon to follow the

case selector, or the compiler is processing a VAR declaration and is expecting a comma or colon

to follow the previous identifier. (e.g. VAR X, Y, Z : INTEGER;);

(expected

The compiler is processing a statement that requires arguments to be supplied in round

brackets (for example, arguments to a user- declared procedure or function, or arguments to a

built-in procedure such as CURSOR). However, it cannot find the opening parenthesis.

) expected

The compiler has finished processing a list of arguments and now expects a closing parenthesis,

however it cannot find one. This error may appear if an argument is mistyped or a comma which

should separate arguments is omitted.

[expected

The compiler is processing an array name (or an array declaration) and now expects a subscript

inside square brackets.

] expected

The compiler has finished processing an array subscript and now expects the closing square

bracket.

*) expected

The compiler has reached the end of the program but is still in the middle of processing a

comment. The probable cause of this is that in the program a comment has commenced with ‘(*

but was not terminated with its corresponding ’*)’.

. expected

There is no period following the final END in the program.

BEGIN expected

G-Pascal

48 | P a g e

The compiler is processing a block and now expects the word BEGIN to mark the start of the

statements in that block. If they have not already been declared this message also means that

the compiler will also accept CONST, VAR, PROCEDURE or FUNCTION declarations. This error is

usually caused by either forgetting to put the word BEGIN before the statements in a Procedure,

Function or main program, or by making a mistake in the CONST or VAR declarations (such as

misspelling CONST for example).

Compiler limits exceeded

It is unlikely this error will appear. However, if it does simplify the statement that it is currently

processing.

Constant expected

The compiler is expecting a constant, in other words one of: a number (such as 20), a hex

constant (such as $ABCD), a string constant (such as ”xyz”), or an identifier declared as a

constant in a CONST declaration.

Data type not recognised

The compiler is processing a VAR declaration and has not found either the word INTEGER or

CHAR.

DO expected

The compiler is processing a WHILE statement and now expects the word DO.

(e.g. WHILE X > 50 DO ...).

Duplicate identifier

The program is attempting to use the same name twice for an identifier under illegal

circumstances. It is permitted to use the same name twice if one occurrence is a ‘global’

declaration (at the start of the program) and another declaration is ’local’ (inside a procedure or

function). The same name cannot be used twice within the same ‘group’ of declarations, for

example VAR FRED, FRED : INTEGER; would be an error.

Identifier expected

The compiler is processing a CONST, VAR, PROCEDURE, or FUNCTION declaration, or the

argument to the ADDRESS function, and is now expecting a user-supplied identifier. (e.g. VAR

FRED).

Illegal factor

The compiler is processing an expression and finds an illegal factor. This could be caused by an

illegally constructed arithmetic expression (e.g. 5 + *), a missing argument to a procedure or

function

(e.g. WRITE ()), or a missing expression where one is expected (e. g. IF THEN).

Illegal identifier

An identifier has occurred in a context in which it was not expected.

G-Pascal

49 | P a g e

Incorrect string

The compiler has detected that a string literal is not where it should be or is not terminated. In

the case of the LOAD and SAVE statements this error will occur if there is no file name where

one is expected, otherwise the error is caused by an opening quote symbol on a line but no

corresponding closing quote symbol. (e. g. "HELLO). ln this example the upwards arrow would

point to the ‘H’ in ‘HELLO’.

Incorrect symbol

The compiler believes it is at the end of the program, however it has found more program

following the final period.

Literal string of zero length

A string of zero length (i.e. two consecutive quote symbols: "") was encountered.

Memory full

There is insufficient room for your I’-codes to follow the source program. Reduce the size of

your program, or place the I’-codes at a different address than the default one of at the end of

the source program. See the section on the %A compiler directive for details on how to do this.

Number out of range

The compiler is processing a decimal or hexadecimal literal and has found that it is too large (or

too small). The allowable range for decimal integers is -8388608 to +8388607. The allowable

range for hexadecimal integers is $0 to $FFFFFF.

OF expected

The compiler is processing a CASE statement and now expects the word OF.

(e.g. CASE recordtype OF ...).

Parameters mismatched

The compiler is processing the invocation of a user-declared Procedure or Function and has

detected that the number of arguments supplied to the Procedure or Function invocation does

not agree with the number of arguments declared for the Procedure or Function.

Stack full

The compiler's internal stack has overflowed due to processing too many nested procedures,

functions or expressions. This message is very rare, however if it does occur the problem can be

corrected by re-writing the program with less ‘nesting’.

(A nested procedure, for example, is a procedure within a procedure within a procedure etc.).

String literal too big

The compiler has encountered a string literal in an expression, however it is more than 3

characters long. String literals of more than 3 characters are only allowed in the LOAD, SAVE and

WRITE statements.

Symbol table full

G-Pascal

50 | P a g e

The program has too many user-declared identifiers (in other words, CONST, VAR, PROCEDURE

or FUNCTION names). There are three possible solutions to this problem. First, reduce the

number of variables if possible. Second, reduce the length of identifiers (with the Editors

Replace command). Third, make identifiers ‘local’ to procedures or functions as much as

possible. Local identifiers (in other words, CONST, VAR, PROCEDURE or FUNCTION declarations

which are inside other procedures or functions) only occupy room in the symbol table whilst

that procedure or function is being processed.

Each user-declared identifier occupies 10 bytes on the symbol table plus the length of the

identifier. In other words, the word FRED would occupy 14 bytes on the symbol table - 10 plus 4

letters in ’FRED’. The total length of the symbol table is 4096 bytes so there is room for 256

identifiers if each is 6 characters long.

THEN expected

The compiler is processing an IF statement and now expects a THEN’ to follow the conditional

expression.

(e.g. IF A = 5 THEN ...).

TO or DOWNTO expected

The compiler is processing a FOR statement and now expects the words TO or DOWNTO.

(e.g. FOR x := 1 TO 10 DO ...).

Type mismatch

This error rarely occurs because G-Pascal allows mixed type operations in general.

For example you may assign a integer variable to a char variable. However this error will occur if the

program either:

a) attempts to read a string into an integer array, or

b) attempts to use a constant name on the left-hand side of an assignment statement.

Undeclared identifier

The identifier to which the upwards arrow is pointing has not been declared. Possibly it is

misspelt, or no CONST, VAR, PROCEDURE or FUNCTION declaration exists for it.

All identifiers MUST be declared before they are referenced, so all PROCEDURE and FUNCTION

declarations must precede any attempts to refer to them.

Use of procedure identifier in expression

The compiler is processing an expression and finds the name of a procedure where the name of

a variable, constant or function should appear.

RUN-TIME ERROR MESSAGES
G-Pascal has only five run-time error messages - these are explained below. A run-time error

message is one that occurs while a program is running rather than compiling. When one of these

messages occurs, it will be followed by the words: ‘Error occurred at P-code xxxx’ where xxxx is

G-Pascal

51 | P a g e

the address of the P-code (instruction) currently being executed. If the meaning of the error is

not immediately obvious, write down the P-code address and then recompile the program,

asking for a listing during the compilation. By referring to the P- code addresses listed at the side

of the compilation listing you can isolate which statement caused the error message.

Break

The program has been aborted by pressing the RUN/STOP key.

Divide by zero

An attempt has been made to divide by zero, which is not permitted. (The MOD operator, which

is a form of divide, may also cause this error).

Illegal Instruction

This message should not appear in normal operation. It means that the P-code interpreter has

encountered an invalid instruction (P- code). This could be caused by a program self-destructing

somehow (perhaps by an array subscript going out of its allowable bounds) or invoking an

‘independent’ procedure which had not been loaded into memory at the correct address.

Illegal parameter in function call

One of the buiItin graphics or sound effects procedures or functions has been called with a

parameter (argument) outside its allowable range. For example, referring to sprite 9 in a SPRITE

statement will cause this error, or voice 4 in a VOICE statement. Not all parameters are checked

in this way - generally speaking the range check is carried out where an incorrect argument

could have disastrous effects on the system if it went unchecked. In other cases the supplied

value is truncated to fit into the required range - for example the filter frequency specified for

the SOUND statement should be in the range 0 to 2047 - if the value exceeds 2047 then the

supplied value modulus 2048 is taken.

Stack full

There is no more room on the stack for variable data. The stack consists of 3,790 bytes (this is

the equivalent of 1,263 INTEGER variables or 3,790 CHAR variables). This could be caused by

either declaring too many variables (e.g. an array of 2,000 integers), or by calling procedures or

functions recursively too often. Each time a procedure or function is invoked 6 bytes are

reserved on the stack for ’linkage’ data (such as the return address - the address from which the

procedure was called) plus any ‘local’ variables declared for that procedure or function.

FILE HANDLING
If you enter ‘F’ (for Files) from the Main Menu you will see:

(L)oad. (A)ppend, (P)rint, (D)0s,

(S)ave, (N)oprint, (V)erify, (Q)uit,

(E)dit, (C)atalog, (O)bject?

G-Pascal

52 | P a g e

This is called the ‘Files Menu’. To choose one, press the letter corresponding to your choice (the

letter in brackets). Do not press RETURN as well. To leave the Files Menu and return to the Main

Menu press ‘Q’ (for Quit). The choices are:

Load

This will load a G-Pascal source program from disk or cassette. The loaded program will replace

any currently in memory. If you do not want to load anything just press RETURN. You will see:
(C)assette or (D)isk?

Press C for Cassette or D for Disk. Any other character will return you to the Files Menu.

You will then see:
File name?

Type in the file name of the file to be loaded (the program name, in other words) and press

RETURN. When loading, appending or verifying from cassette the file name is optional - if any

file will do just press RETURN. The program will now load.

Warning: There is no check to see if the program is too big. It is your responsibility to not load

programs that are too big. This would not normally happen unless the file was created

independently of G-Pascal. If you do load a file that is too big you will probably ’clobber’ part of

G-Pascal.

Append

This appends a program to the back of one that is currently in memory. If you do not want to

append anything just press RETURN. Append is a powerful way of copying useful procedures or

functions from one program to another. You could build a ‘library’ of useful procedures and

functions and just Append them at the appropriate points in your program, thus saving a lot of

typing and debugging effort. Apart from the fact that the Appended program goes at the end of

the one currently in memory. Append works the same as Load so see the ‘Load’ command for

what to type next. Be careful when appending that you do not append too much to fit into

memory. G-Pascal does not check, when appending, that there is sufficient room for the new

file.

Save

This saves your program on disk or cassette. If saving to disk then the saved program will replace

any of the same name on disk. If you do not want to save your program just press RETURN.

Apart from the fact that the program is being saved, not loaded, the Save command works the

same as the Load command so see the ‘Load’ command for what to type next.

Note: after pressing return on the file name if you get the error:
Saving (filename)

 Error 80

Code: 63, file exists,00,00

This indicates that a file of that name already exists. If you wish to over write the file then enter

@0:(filename) so that the Commodore disk drive OS to overwrite the file. e.g.
<C>assette of <D>isk ? d

G-Pascal

53 | P a g e

File name? @0:demo file 01

Saving @0:demo file 01

Code: 00, ok,00,00

Verify

This verifies that the program recently saved on disk or cassette has saved properly. It reads the

file on disk or cassette and compares it with the image in memory. Naturally for this to work

properly it must be done before any changes are made to the program in memory. Apart from

the fact that the file is being verified, not loaded, the Verify command works the same as the

Load command so see the ‘Load’ command for what to type next.

Object

This allows you to save your P-codes to disk or cassette. (Compiled files are commonly called

‘object’ files). If you have not done a error-free compile you will get an error message. You will

be asked for your object file name, just enter its name and press RETURN. If you have selected

‘Object’ by mistake just press RETURN only. If saving to disk, then the saved object file will

replace any file of the same name currently on disk.

Please be careful that you do not save your object under the same name as your ‘source’

program - that is, your G-Pascal statements. You cannot convert object code back to source

code so if you lose your source code you are in trouble.

However, if you lose your object code you can always recompile from the source code. The

object code is completely relocatable so it can be loaded at any address without change. You

would do this for using the code as an independent module (see section on ‘Independent

Modules’) or for use with the run-time system (available separately).

Edit

This takes you directly to the Editor. lt is useful to press ‘E’ while a program is loading then you

will be taken to the Editor as soon as the load completes.

Print

This directs output to your printer. Further screen displays will also appear on the printer unless

’Noprint' (below) is selected or you press RUN/STOP/RESTORE. Printing is also cancelled at

the end of a program run.

To print your program just press ‘P’ for print (this option), then E (for Edit) and L (RETURN) to list

the program. If you have no printer plugged into the serial port then you will get an error

message.

Noprint

This cancels any previous ‘Print’ command. lf you were not printing or have no printer anyway

this has no effect.

Dos

This option allows commands to be sent to the DOS (Disk Operating System) in order to

accomplish disk-oriented operations such as deleting files and so on. After selecting this option

G-Pascal will reply:

G-Pascal

54 | P a g e

Command?

At this stage press RETURN if you do not want to send any command to the DOS,

otherwise enter the command (as described in the DOS manual), and then press

RETURN.
Command? s:data

If successful will have deleted the file ‘data’ with the message:
Code: 01, files scratched,01,00

Catalog

This option will produce a catalogue (directory) listing of your disk. ln other words, it will display

on the screen the names of all the files on your disk. Also displayed will be the size of each file

and the amount of room available on the disk.

Meaning of error codes
If an error is encountered in loading, saving, verifying etc. an error code number will be

returned. The meanings of the common error codes are as follows:

Error Description

1 Too many open files

2 File already open

3 File not open

4 File not found

5 Device not present

6 File is not an input file

7 File is not an output file

8 File name is missing

9 Illegal device number

10 Unrecoverable read error / mismatch

20 Checksum error

40 End of file

80 End of tape/Device not present

G-Pascal

55 | P a g e

OPENING AND CLOSING FILES

G-Pascal allows you to open and close files, direct output to a file or obtain input from a file. This

is achieved with the following statements:

OPEN (file, device, channel, “file-name*)
The file number may be from 1 to 255 and is used to identify the file in subsequent GET, PUT

and CLOSE statements.

The device number identifies the type of device that the OPEN applies to. It is normally 8 for a

disk, 4 for a printer and 1 for the cassette.

The channel number (otherwise known as the ‘secondary address’) is used to send secondary

information to the device. It may be from 2 to 15 for a disk where 15 is the disk ‘command’

channel. Other numbers may be used for printers for special purposes such as plotting, graphics,

lower case and so on.

The "file-name” must be a string of at least one character inside quote symbols. It represents

the file name when opening a disk file, or the command when sending a disk command. In the

case of printers it is ignored, so just a single space (" ") will do.

The result of the OPEN is returned in the reserved word INVALID - if INVALID is non-zero after

the OPEN then an error has occurred and INVALID contains the actual number corresponding to

the type of error that occurred.

For example, to open file 5 as the printer (device 4) you would say:
OPEN (5, 4, O, “ ");

To open a disk file for output as file number 10 you would say:
OPEN (10, 8, 2, “0:DATA,S,W");

 If the file exists and you wish to overwrite it then at the at (@) sign before the 0: i.e.
OPEN (10, 8, 2, “@0:DATA,S,W");

PUT (file-number)

PUT is used to direct output (from WRITE and WRITELN statements) to a previously opened file.

All subsequent WRITE and WRITELNs will direct their output to the nominated file an error will

occur if the file is not open or is not an output file.

To re-direct output to the TV screen (the default condition) the statement: PUT (0) must be

issued. The result of issuing a PUT is stored in the function INVALID. If INVALID is zero then the

PUT was OK, otherwise it contains the number of the error that occurred.

{{Hand written comment added to original manual -W.B. PUT(0) in between redirecting to

another files.}}

GET (file-number)

GET is used to receive input (to a READ statement) from a previously opened file. All subsequent

READs will receive input from the nominated file an error will occur if the file is not open or is

not an input file.

To receive output from the keyboard again (the default condition) the statement: GET (0) must

be issued.

G-Pascal

56 | P a g e

The result of issuing a GET is stored in the function INVALID. If INVALID is zero then the GET was

OK, otherwise it contains the number of the error that occurred.

Both GET (0) and PUT (0) function identically they issue a ‘clear channel’ command to the Kernal,

resetting both input and output to the default operation of keyboard and screen respectively.

The files are still open, however and may be re-accessed with further GET and PUT statements.

CLOSE (file-number);

CLOSE is used to close the nominated file. For example, CLOSE (15) closes file

number 15. All open files should be closed, although G-Pascal automatically does

a ‘close all files’ at the completion of each run.

Sample Program

(* DEMO FOR READING AND WRITING *)

(* DATA FILES. *)

VAR

 CHOICE : INTEGER ;

FUNCTION MENU(A);

VAR

 ENTRY : INTEGER ;

BEGIN

 IF A = 1 THEN BEGIN

 (* DISPLAY MAIN MENU *)

 WRITE (CHR (147));

 WRITELN ("DEMO FILE MAIN MENU");

 WRITELN ("-------------------");

 WRITELN ("1) WRITE RECORDS TO DISK.");

 WRITELN ("2) DISPLAY RECORDS.");

 WRITELN ;

 WRITELN ("9) EXIT PROGRAM");

 WRITELN ;

 WRITE ("ENTER CHOICE ");

 READ (ENTRY);

 MENU := ENTRY;

 END ;

END ; (* OF MENU FUNCTION *)

PROCEDURE WRITEDATA;

VAR

 RECNO, RECCNT : INTEGER ;

BEGIN

 WRITE (CHR (147)); (* CLRSCRN *)

 WRITELN ("WRITE DATA TO DISK");

 WRITELN ("------------------");

 WRITE ("ROW TO WRITE TO DISK ");

 READ (RECCNT);

G-Pascal

57 | P a g e

 WRITELN ;

 OPEN (10, 8, 2, "@0:DATA,S,W");

 FOR RECNO := 1 TO RECCNT DO BEGIN

 WRITE ("WRITING REC ", RECNO);

 WRITELN (" OF ",RECCNT);

 PUT (10);

 WRITELN (RECNO);

 WRITELN (RECCNT);

 PUT (0);

 END ;

 CLOSE (10);

 WRITE ("ENTER TO CONTINUE ");

 READ (RECNO);

END ; (* WRITEDATA PROC *)

PROCEDURE READDATA;

VAR

 RECNO, RECCNT : INTEGER ;

 ERRCODE : INTEGER ;

BEGIN

 WRITE (CHR (147));

 WRITELN ("DISPLAY DATA FROM DISK.");

 WRITELN ("----------------------------");

 OPEN (9, 8, 2, "0:DATA,S,R");

 GET (9); (* INPUT FROM DISK *)

 READ (RECNO, RECCNT);

 ERRCODE := INVALID ;

 WHILE ERRCODE = 0 DO BEGIN

 GET (0); (* INPUT KEYBOARD *)

 WRITE ("RECORD ", RECNO);

 WRITE (" OF ", RECCNT);

 WRITE (" STATUS ", ERRCODE);

 GET (9); (* INPUT FROM DISK *)

 READ (RECNO, RECCNT);

 ERRCODE := INVALID ;

 END ;

 GET (0); (* INPUT KEYBOARD *)

 CLOSE (9);

 WRITE ("ENTER TO CONTINUE");

 READ (RECNO);

END ; (* READDATA PROCEDURE *)

(* ----- MAIN PROGRAM ----- *)

BEGIN

 REPEAT

 CHOICE := MENU(1);

 CASE CHOICE OF

 1 : WRITEDATA;

G-Pascal

58 | P a g e

 2 : READDATA

 ELSE (* DO NOTHING *)

 END ;

 UNTIL CHOICE > 8;

END .

{{ Available on disk as file demo file 01 }}

G-Pascal

59 | P a g e

THE GRAPHICS COMMAND

The GRAPHICS command is a general-purpose command which accomplishes 18 different

actions. The GRAPHICS command is supplied with pairs of arguments, where the first is the

action number and the second is the value to be passed to that action routine. For example:

GRAPHICS (multicolour, on, extended background, off); For ease of comprehension, and to make

your programs self-documenting, we strongly suggest that the action numbers and colour

names etcetera be defined in a series of CONST definitions at the start of the program, as shown

below. If you do this, then the command: GRAPHICS (BORDERCOLOUR, RED) and

GRAPHICS (11, 2) function identically, however the former makes the program much

easier to read. The exact spelling of the action names is up to you as they are not reserved

words, however your spelling must be consistent throughout your program.

The descriptions of the various actions over the next few pages use the spelling given below.

We suggest that you key in the CONST definitions given below, plus the ones for the SPRITE,

VOICE and SOUND functions, and keep them on disk or cassette in a separate file for ease of use

in the future.

It you wish you can omit the action names for any actions that a particular program is not going

to use - for example if you do not plan to use bit-mapped graphics you could omit: BITMAP = 1.

CONST

BITMAP = 1; MULTICOLOUR = 2;

EXTENDEDBACKGROUND = 3; COLUMNS40 = 4;

L|NES25 = 5; DlSPLAYSCREEN = 6;

BANKSELECT = 7; CHARGENBASE = 8;

VIDEOBASE = 9; CHARACTERCOLOUFI = 10;

BOHDEFICOLOUR = 11; BACKGHOUNDCOLOURO = 12;

BACKGROUNDCOLOUH1 = 13; BACKGROUNDCOLOUR2 = 14;

BACKGHOUNDCOLOUH3 = 15; SPRITECOLOUFIO = 16;

SPRITECOLOUH1 = 17; WRITEBASE = 18;

BLACK = 0; WHITE = 1; RED = 2;

CYAN = 3; PURPLE = 4; GREEN = 5;

BLUE = 6; YELLOW = 7; ORANGE = 8;

BROWN = 9; LIGHTRED = 10; DARKGREY = 11;

MEDIUMGREY = 12; LIGHTGHEEN = 13; LIGHTBLUE = 14;

LIGHTGREY = 15;

ON = 1; OFF = 0;

GRAPHICS (BITMAP, ON);

Turns bit-mapped (high resolution) graphics mode on.

GRAPHICS (BITMAP, OFF);

Turns bit-mapped graphics off - returns to character graphics mode.

GRAPHICS (MULTICOLOUR, ON);

Tums on multi-colour display mode - can be used with character graphics or bitmapped

graphics.

G-Pascal

60 | P a g e

GRAPHICS (MULTICOLOUR, OFF);

Turns off multi~coIour display mode.

GRAPHICS (EXTENDEDBACKGROUND, ON);

Tums on extended background display mode.

GRAPHICS (EXTENDEDBACKGROUND, OFF);

Turns off extended background display mode.

GRAPHICS (COLUMNS40, ON);

Displays 40 columns of text (the default).

GRAPHICS (COLUMNS40, OFF);

Displays 38 columns of text (border contracts). Normally used in conjunction with sideways

smooth scrolling.

GRAPHICS (LINES25, ON);

Displays 25 lines of text (the default).

GRAPHICS (LINES25, OFF);

Displays 24 lines of text (border contracts). Normally used in conjunction with vertical smooth

scrolling.

GRAPHICS (DISPLAYSCREEN, ON);

Enables normal display of text or graphics on the screen (default condition).

GRAPHICS (DISPLAYSCREEN, OFF);

Blanks out the screen. The border colour is displayed on the whole screen. Results in a faster

execution of programs. Normally used to hide the contents of a screen until it is ready to be

viewed.

GRAPHICS (BANKSELECT, bank);

Used to bank-select the VIC (Video Interface Chip) to a nominated 16K bank of memory. ‘Bank’ can be

from 0 to 3, where 0 is the normal mode.

 Range Range

Bank Begin END

0 $0000 $3FFF

I $4000 $7FFF

2 $8000 $BFFF

3 $C000 $FFFF

GRAPHICS (CHARACTERCOLOUR, colour);

G-Pascal

61 | P a g e

Sets the colour for all subsequent characters to be displayed with the WRITE command. The

colour definitions are given at the start of this section. Colours range from 0 (black) to 15 (light

grey).

GRAPHICS (BORDERCOLOUR, colour);

Sets the border colour to the nominated value.

GRAPHICS (BACKGROUNDCOLOUR0, colour);

Sets the background colour (normal background).

GRAPHICS (BACKGROUNDCOLOUR1, colour);

Sets the colour of extended background colour 1. (Used with extended background mode).

GRAPHICS (BACKGROUNDCOLOUR2, colour);

Sets the colour of extended background colour 2. (Used with extended background mode).

GRAPHICS (BACKGROUNDCOLOUR3, colour);

Sets the colour of extended background colour 3. (Used with extended background mode).

GRAPHICS (SPRITECOLOUR0, colour);

Sets multi-colour sprite colour 0. (Used with multi-colour sprites).

GRAPHICS (SPRITECOLOUR1, colour);

Sets multi-colour sprite colour 1. (Used with multi-colour sprites).

GRAPHICS (CHARGENBASE, base);

Used to nominate where the character patterns for character display mode are to be found.

‘Base’ should be from 0 to 7, where 2 is normal upper—case and graphics characters, and 3 is

upper and lower- case characters. Other values could be used if you set up your own character

memory. Each number represents a 2K boundary of memory, so that the locations of character

memory are as follows:

 Location of character memory

Base Begin End Comments

0 $0000 $07FF

1 $0800 $0FFF

2 $1000 $17FF (ROM IMAGE in BANK 0 and 2 — default)

3 $1800 $1FFF (ROM IMAGE in BANK O and 2)

4 $2000 $Z7FF

5 $2800 $2FFF

6 $3000 $37PF

7 $3800 $3PFF

If you are not using Bank 0 then the Bank address (refer to the BANKSELECT description above)

must be added to the above.

G-Pascal

62 | P a g e

GRAPHICS (VIDEOBASE, base);

Used to nominate where screen memory starts. ’Base’ should be from 0 to 15, where 1 is

normal. Each number represents a 1K boundary of memory. You would normally change the

location of screen memory if you wanted to do ‘page flipping‘ - that is, animation or other

special effects by keeping text or graphics on two or more separate areas of screen memory and

flipping from one to the other. Warning:

this command changes the area of screen memory that is displayed - it does not change the area

of screen memory that the WRITE command actually puts text onto. To change this you need to

use the GRAPHICS (WRITEBASE, base) command so that subsequent WRlTEs write to the correct

screen memory area.

Base Starting location

0 $0000

1 $0400

2 $0800

3 $0C00

4 $1000

5 $1400

6 $1800

7 $1C00

8 $2000

9 $2400

10 $2800

11 $2C00

12 $3000

13 $3400

14 $3800

15 $3C00

If you are not using Bank 0, then the bank address (refer to the BANKSELECT description

previously) must be added to the starting location. e.g.
GRAPHICS (VIDEOBASE, 15, WRITEBASE, 15);

GRAPHICS (WRITEBASE, base);

Used to nominate which piece of screen memory that the WRITE command will write to. ‘Base’

should be from 0 to 15, where 1 is normal. Each number represents a 1K boundary of memory.

You would normally use this command in conjunction with the GRAPHICS (VIDEOBASE, base)

command (see previously) in order to write to a different area of memory then usual when

doing ‘page flipping’ . Warning: this command changes the area of screen memory that the

WRITE command writes to - it does not change the area of screen memory that is displayed. To

change this you need to use the GRAPHICS (VIDEOBASE, base) command so that the

correct screen memory area is displayed.

G-Pascal

63 | P a g e

SPRITE PROCESSING OVERVIEW

G-Pascal provides extensive support for sprites. Sprites (otherwise known as ‘movable object

blocks’ - MOBs) are shapes of up to 24 dots across and 21 dots down which can be placed

anywhere on the screen very easily without affecting any display underneath. You can have up

to 8 sprites displayed at once - all moving independently, having unique shapes, and coloured

independently.

First, to show how easy sprites are to program in G-Pascal, try this small program on your

Commodore 64. This program contains the essence of successful sprite programming, namely:

a. define the shape of your sprite (DEFINESPRITE);

b. point a particular sprite to the shape you have defined (POINT);

c. allocate a colour to the sprite (COLOUR); and finally:

d. move it about on the screen (MOVESPRITE).

CONST

 COLOUR = 1;

 POINT = 2;

 YELLOW = 7;

 BLACK = 0;

 BACKGROUNDCOLOUR0 = 12;

BEGIN

 (* SET BACKGROUND TO BLACK *)

 (* NOTE THAT BOTH LINES BELOW *)

 (* DO THE SAME THING. EITHER *)

 (* LINE CAN BE DELETED. *)

 GRAPHICS (10, 0);

 GRAPHICS (BACKGROUNDCOLOUR0, BLACK);

 (* SPRITE COMMANDS *)

 DEFINESPRITE (128, $FFFFFF, $F0000F, $FFFFFF);

 SPRITE (1, POINT, 126, 1, COLOUR, YELLOW);

 MOVESPRITE (1, 50, 50, 256, 256, 160);

END .

{{ Available on disk as demo sprite 01 }}

Result as per below showing a yellow sprite.

G-Pascal

64 | P a g e

This example illustrates how a simple 6-line program is all that is needed to define a sprite and

move it around on the screen. Having tried this example, experiment with different colours,

different coordinates in the MOVESPRITE command, and different shapes in the DEFINESPRITE

command.

Since the sections that follow which describe the various sprite- handling commands and

functions may seem a bit daunting at first we will describe briefly the purpose of the various

commands and relate them to each other.

• You define sprite shapes with DEFINESPRITE. You set up a sprite’s colour, point it to a shape

definition, activate it, expand it in the x and y directions if desired, and put it in front of or

behind the background with the SPRITE command.

• You position a stationery sprite on the screen with POSITIONSPRITE or move a sprite around

automatically with MOVESPRITE.

• You can make a sprite sequence through different shapes (to give animation effects) with

ANIMATESPRITE.

• You can stop a moving sprite with STOPSPRITE and start it again with STARTSPRITE. You can

tell G-Pascal to stop sprites moving it they collide with SPRITEFREEZE and check whether this

has happened with FREEZESTATUS.

• You can also check whether sprites have collided with the SPRITECOLLIDE function, and

whether a sprite has hit the background with the GROUNDCOLLIDE function.

• You can see whether or not a sprite is moving with SPRITESTATUS, and check its coordinates

on the screen with the SPRITEX and SPRITEY functions.

The SPRITE command
The SPRITE command is a general-purpose command that accomplishes 7 different actions

relating to sprites, such as controlling a sprite’s colour, whether or not it is displayed on the

screen, whether to expand it in the x or y direction and soon. The SPRITE command accepts

arguments in groups of three — the first is always the sprite number, from 1 to 8.

The Commodore 64 Programmer’ s Reference Guide - which should be consulted for more details

about sprite characteristics — refers to sprites as being numbered from 0 to 7, however G-Pascal

numbers sprites from 1 to 8.

The second argument to the SPRITE command is an ‘action number’ from 1 to 7. In a similar way

to the GRAPHICS command, we will assume that the action numbers are defined in a CONST

declaration as given below. The third argument to the SPRITE command is the value to be

passed to the action routine. For example:

SPRITE (2, colour, green, 2, expandx, on, 2, active, on);

CONST

 COLOUR= 1;

G-Pascal

65 | P a g e

 P0lNT=2;

 MULTICOLOURSPRITE = 3;

 EXPANDX = 4;

 EXPANDY = 5;

 BEHINDBACKGFIOUND = 6;

 ACTIVE = 7;

 ON = 1;

 OFF = O;

SPRITE (sprite-number, COLOUR, colour);

Sets the colour of the nominated sprite. The colour definitions are given at the start of the

GRAPHICS command section. Colours range from O (black) to 15 (light grey).

SPRITE (sprite-number, POINT, position);

Points the sprite to its appropriate pattern definition.

This command is used to set or change the appearance of a sprite on the screen. The pattern

number must have been previously defined with a DEFINESPRITE command or a random shape

will appear.

The position ranges from 0 to 255 where each position number represents a 64 byte boundary

in memory (in the current bank).

If using bank zero then positions less than 16 would not normally be used. Also positions in the

range of 64 to 127 clash with the ROM images of the character sets (addresses $1000 to $2000)

and should not be used.

Normally, sprite definitions would start at position 128 onwards. If using the ANIMATESPRITE

command then this command is not necessary, as ANIMATESPRITE overrides the position set by

this command.

SPRITE (sprite-number, MULTICOLOURSPRITE, ON);

Enables this sprite to be in multi-colour mode. When using this mode, the sprite auxiliary

colours are defined using the GRAPHICS command, actions SPRITECOLOURO and

SPRITECOLOUR1.

SPRITE (sprite-number, MULTICOLOURSPRITE, OFF);

Reterns this sprite to single-colour mode. This is the default condition.

SPRITE (sprite-number, EXPANDX, ON);

Doubles the size of this sprite in the X axis (horizontally).

SPRITE (sprite-number, EXPANDX, OFF);

Returns this sprite to its unexpanded display in the X axis.

SPRITE (sprite-number, EXPANDY, ON);

Doubles the size of this sprite in the Y axis (vertically).

SPRITE (sprite-number, EXPANDY, OFF);

G-Pascal

66 | P a g e

Returns this sprite to its unexpanded display in the Y axis.

SPRITE (sprite-number, BEHINDBACKGROUND, ON);

Displays this sprite behind any ‘background’ data on the screen, such as text or bit-mapped

graphics drawings.

SPRITE (sprite-number, BEHINDBACKGROUND, OFF);

Displays this sprite in front of background data.

SPRITE (sprite-number, ACTIVE, ON);

Displays this sprite on the screen so that it can be seen. Note that the sprite may not be visible it

its display co-ordinates fall outside the screen area (in other words, if it is in the border area).

The sprite should have been positioned on the screen previously with the POSITIONSPRITE

command. It you use the MOVESPRITE command (explained further) then activating the sprite

with this command is unnecessary.

SPRITE (sprite-number, ACTIVE, OFF);

Tums this sprite off so that it can no longer be seen on the screen. This does not stop a sprite

moving if it is moving under MOVESPRIT E control - it just makes it invisible.

GENERAL SPRITE COMMANDS
The following commands control other aspects of sprites that are not handled by the SPRITE

command, such as defining a sprite’s shape, moving from one point on the screen to another

and so on. Most of them use a sprite number as an argument, in which case a sprite number in

the range 1 to 8 is supplied.

DEFINESPRITE (position, rowl, row2, row3 row21);

This is used to define the shape of a sprite. lt does not use a sprite number as shapes are

independent of sprites — all sprites can use the same shape it desired, or perhaps a given shape

may not be used by any sprite at a given moment.

The ‘position’ nominates the location of the shape definition in memory. Each sprite definition

takes 64 bytes so each ‘position’ number refers to a 64 byte boundary within the current video

bank. To avoid clashes with screen memory, character memory, and system work areas, sprite

definitions should normally start at 128 (this is address $2000 in memory).

A sprite definition consists of up to 21 rows of sprite shape data. Each row consists of 24 ‘bits’

(dots). As an integer in G-Pascal is three bytes long (24 bits) each row is defined by one integer.

You would normally define sprites as a series of hex constants, but decimal constants or even

variables could be used it desired.

Any unused rows at the end can be omitted - they will be assumed to be zero (background). For

example, a definition of a straight line would be:
DEFINESPRITE (128. $FFFFFF);

A simple box shape would be:

G-Pascal

67 | P a g e

DEFINESPHITE (129, $FFFFFF, $C00003, $CO0O03, $FFFFFF);

POSITIONSPRITE (sprite-number, x, y);

This command positions a sprite at the nominated x and y co-ordinates on the screen. It is used

for placing stationery sprites on the screen. lf you want the sprite to move, use the MOVESPRITE

command instead. If a sprite is moving under MOVESPRITE control when you give a

POSITIONSPRITE command then the POSITIONSPRITE will cancel the sprite’s movement.

For example, to position sprite 5 at coordinates 100, 140 on the screen:
POSITIONSPRITE (5, 100, 140);

MOVESPRITE (sprite-number, x, y, x-increment, y-increment, moves);

This command:

a. Positions the nominated sprite at the nominated x and y co-ordinate.

b. Tums the sprite on so that it can be seen.

c. Sets its SPRITESTATUS to 1 to indicate that it is moving.

d. Moves it by the nominated increments ’moves’ times.

e. When it has moved the nominated number of times, stops the sprite’s movement and sets

its SPRITESTATUS to 0 to indicate that it has finished moving.

The sprite should have been pointed to a sprite definition, or an ANlMATESPRITE command given for

the sprite. The movement of the sprite is carried out by ‘interrupt driven' routines asynchronously

with your program. In other words, once the sprite has been started in motion by the MOVESPRITE

command it will move independently of the program.

All the program has to do is check its SPRITESTATUS to find whether it has finished its planned

movement or not. It is not necessary to wait for the sprite to stop moving before doing something

else with the sprite.

It can be stopped with the STOPSPRITE command which will ’freeze’ it wherever it currently is on

the screen. It can be hidden by inactivating it (e.g. SPRITE (5, ACTIVE, NO);). Alternatively,

another MOVESPRITE command can be given which will cancel the current one. The x-increment

and y-increment are specified in 1/256 of a sprite position.

This is to allow very fine tuning of the rate at which a sprite moves. For example, an increment of

256 means the sprite will move exactly one pixel per frame (a frame is about 1/60 of a second). An

increment of 1024 means the sprite will jump four pixels per frame (4 times 256 is 1024). This will

make the sprite look a bit jerky.

An increment of 1 will mean that the sprite will move one pixel every 256 frames (about every 5

seconds).

An increment of zero means the sprite will not move in that direction at all. The ‘moves’ argument

specifies the number of frames that the sprite will move before stopping automatically. When the

number of moves has been reached the sprite is stopped and its SPRITESTATUS

set to zero so that the program knows that the sprite has stopped.

Note that this does not mean that the sprite becomes invisible - it just stops moving. The maximum

number of moves that can be specified is 32768. The sprite’s position at any time can be established

by the SPRITEX and SPRITEY functions.

G-Pascal

68 | P a g e

ANIMATESPRITE (sprite-number, frame-count, position], position2 ...);

This command allows a sprite which is in movement by a MOVESPRITE command to sequence

through a series of sprite definitions automatically. A use for this could be to give the

appearance of a person running, by having half a dozen (say) different sprite definitions of a

person in different stages of running and nominating the order in which they are to be

displayed. ANIMATESPRITE is normally given before a MOVESPRITE as the actual movement is

carried out by the MOVESPRITE command. Up to 16 positions can be nominated. A position of

zero should not be used.

See the DEFINESPRITE command for more details about the range of numbers that can be

chosen for positions. The ‘frame-count’ nominates the number of ‘frames’ that are to pass

before the next position in sequence is displayed. The higher the frame-count, the more slowly

the sprite will change its shape. For experimental purposes we suggest a frame-count in the

range of 5 to 10. (Each frame is about 1/60 of a second).

The maximum frame count is 255. e.g.
ANIMATESPRITE (3, 5, 128, 129, 130, 131, 132);

SPRITESTATUS (sprite-number);

This function returns the status of a nominated sprite, namely whether or not it is moving. If the

status is zero then the sprite has:

a. Never been moved with a MOVESPRITE command or

b. Completed a move specified by a MOVESPRITE command or

c. Been stopped with a STOPSPRITE command or

d. Been stopped by a collision under SPRITEFREEZE control.

If the status is 1 then the sprite is currently moving under control of a MOVESPRITE command.

SPRITESTATUS may be used as a Boolean function as it will, in effect, return TRUE if the sprite is

moving and FALSE if it is stationery. (G-Pascal considers zero to be FALSE, and non- zero to be TRUE).

SPRITECOLLIDE

This function returns the contents of the sprite-to-sprite collision register. This is a hardware register

in the VIC chip. If the result is zero then no sprites are colliding with each other. If the result is non-

zero then two or more sprites are colliding with each other.

You may prefer to let G-Pascal automatically check for sprite collisions for you and automatically

stop any sprites involved in collision. In this case, you should use the SPRITEFREEZE command

described further on.

lf you wish to establish which sprite is involved then the result must be ANDed with the numbers in

the following table. Warning: checking the SPRITECOLLIDE status will clear the collision register

ready for the next collision. If you want to do a series of tests on the result then the result should be

saved into an intermediate variable and the test carried out on the variable. You should not refer to

the SPRITECOLLIDE function if you are using the SPRITEFREEZE command. In this case you should

check the FREEZESTATUS function which returns collision bits in the same way as the SPRlTECOLLIDE

function (i.e. as in the table on the next page).

G-Pascal

69 | P a g e

Sprite Collision bit value

1 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

For example, to check whether sprite 1 or 5 was involved in a collision with another sprite (or

each other):

X := SPRITECOLLIDE;

IF (X AND 1 <> 0) OR (X AND 16 <> O) THEN

BEGIN

 (* GOT A COLLISION *)

END;

Alternatively (and more simply) you can add together the values for any sprites you are

interested in so the above example could read:
IF SPRITECOLLIDE AND 17 THEN

BEGIN

 (* GOT A COLLISION *)

END;

Note that it more than two sprites are involved in collisions at one time then you cannot tell

from the SPRITECOLLIDE function which sprite is colliding with which. (This is a hardware

limitation). In that case you must work out which is colliding with which by comparing their co-

ordinates on the screen (by using the SPRITEX and SPRITEY functions for each sprite). Of course

it may not matter which sprite has hit which, for example if sprite 1 is the player’ s ship and all

other sprites are ‘aliens’ then it would suffice to detect that sprite 1 is involved in a collision

(i.e. IF SPRITECOLLIDE AND 1 THEN).

GROUNDCOLLIDE

This function returns the contents of the sprite-to-background collision register. This is a

hardware register in the VIC chip. If the result is zero then no sprites are colliding with the

background. If the result is non~zer0 then two or more sprites are colliding with the

background. If you wish to establish which sprite is involved, then the result must be ANDed

with the numbers in the table above (the same values as for SPRITECOLLIDE).

Warning: checking the GROUNDCOLLIDE status will clear the collision register ready for the next

collision. If you want to do a series of tests on the result, then the result should be saved into an

intermediate variable and the test carried out on the variable.

STOPSPRITE (sprite-number);

G-Pascal

70 | P a g e

This command stops the movement of the nominated sprite, assuming that it has previously

been moved by the MOVESPRITE command. If the sprite is not moving already this command

will have no effect. STOPSPRITE will set the appropriate SPRITESTATUS to zero. It is advisable to

do a STOPSPRITE before checking a sprite’s position, as the sprite may keep moving while its

position is being calculated, for example after detecting a collision.

If it is desired to allow the sprite to start moving again and complete the original move specified

by the MOVESPRITE command in the first place, use the STARTSPRITE command.

Note that sprites may be stopped automatically if they collide by the SPRITEFREEZE command

(described later.)

STARTSPRITE (sprite-number);

This command reinstates the movement specified for a nominated sprite which had been

temporarily stopped by a STOPSPRITE command. Do not give a STARTSPRITE for a sprite which

had not been moved originally with a MOVEPRITE command or the results may be

unpredictable.

The intended use for STOPSPRITE and STARTSPRITE is for in a game where a number of sprites

are moving about on the screen and the program is waiting for some event to happen, for

example a collision being detected, or the player making a different move with the joystick. ln

this case the program may want to temporarily ‘freeze’ all relevant sprites (with STOPSPRITE),

calculate their positions, and proceed on the basis of what the sprite positions are.

Any sprites not affected (for example, those that are not involved in a collision) can then be

started again with a STARTSPRITE so they can proceed on their planned courses.

Also see the SPRITEFREEZE command for details about how sprites can be automatically stopped

by a collision. ln this case you would use STARTSPRITE if you wanted sprites to continue on their

courses.

SPRITEX (sprite-number);

SPRITEX is a function that returns the x co-ordinate of the nominated sprite. It is particularly

useful when used in conjunction with the MOVESPRITE command, as the program may not

know where the sprite is on the screen at a given moment. If the sprite is in motion because of a

MOVESPRITE command it would be advisable to stop it temporarily with a STOPSPRITE

command or the sprite may have moved from the position that is returned by this function. A

powerful use of the SPRITEX and SPRITEY functions is for changing the direction of a sprite. You

could use the sprite’s current position when specifying a new MOVESPRITE command in a

different direction

SPRITEY (sprite-number);

SPRITEY is a function that returns the y co-ordinate of the nonunated sprite. It is normally used

in conjunction with SPRITEX. For example:
XPOSITION := SPRITEX (4);

YPOSITION := SPRITEY (4);

SPRITEFREEZE (mask);

G-Pascal

71 | P a g e

The SPRITEFREEZE command and its associated function, FREEZESTATUS, provide real-time

control over collisions between sprites and other sprites. First, some background on the need

for such a command...

Most arcade-style games involve objects moving around the screen. Frequently these objects

are spaceships, aliens, missiles and bombs. (Please excuse the blood thirsty nature of these

descriptions). Often the player of a game controls one object (his/her ship) and fires missiles at

the other objects which are controlled by the program.

Normally the object of the game is to cause objects to collide, such as a missile with an alien, or

avoid a collision, such as an alien with the player’s ship. Therefore the subject of ‘collision

detection’ is very important. It is important to correctly register collisions between objects - not

only the fact that a collision occurred, but correctly decide which objects collided.

We will assume for our discussion that all the moving objects in question will be implemented as

sprites, and so the problem is detection of collisions between sprites. The VIC (Video Interface

Chip) inside the Commodore 64 has provision for detection of collisions between sprites and

other sprites and returns the details of a collision in a ‘hardware’ register, known within G-

Pascal as SPRITECOLLIDE.

One method of checking for collisions is to periodically check whether SPRITECOLLIDE is non-

zero. Unfortunately, a finite time must elapse between such checks, as the program has other

things to do as well, such as scorekeeping, checking for player input from the joystick, keyboard

or paddles, and other tasks such as moving aliens around on the screen. Therefore, it is possible

for a collision to go undetected too long - in other words, by the time the program notices the

collision the two sprites which collided may have separated again.

A further problem is that the VIC chip tells us which sprites have collided, but not which sprites

they have collided with. For example, on the left-hand side of the screen a missile may have hit

an alien (which we will call a ‘genuine’ collision), but on the right- hand side of the screen one

alien may pass in front of another (which we will call a ‘pseudo’ collision). We cannot tell just by

examining SPRITECOLLIDE the difference between a genuine and a pseudo collision - the only

way is to compare the coordinates of each sprite involved in a collision and see which ones

overlap. Because of this necessity it is especially important to detect a collision as soon as it

occurs.

Fortunately, the SPRITEFREEZE command provides this capability. It works in conjunction with

an ‘interrupt’ routine built into G- Pascal. The way it works is this: at the start of the game issue

a SPRITEFREEZE command with a mask which specifies which sprites may be involved in

‘genuine’ collisions (e.g. the sprite which will be the missile). This is done by adding together the

mask values for all relevant sprites. For example, if we want to detect any collisions involving

sprites 7 or 8 (with any other sprites) then the mask would be 64 + 128 = 192. So, we would say:
SPRITEFREEZE (192);

G-Pascal

72 | P a g e

Then the moment any collision occurs involving the nominated sprites an ‘interrupt’ is

generated which immediately transfers control to a special routine inside the G-Pascal

interpreter, regardless of what else the program is doing. This routine then places the contents

of the sprite-to-sprite collision register in FREEZESTATUS, and then inhibits any further such

interrupts (this is to give the program a chance to

process the first one). The routine then stops all sprites that were involved in the collision (by

effectively doing a STOPSPRITE). This means that they will stop moving so that their coordinates

(at the time of the collision) may be examined by the program.

All the program has to do is periodically examine FREEZESTATUS — as soon as it becomes non-

zero the program knows that one of the nominated sprites has collided with another sprite.

Each ‘bit’ in FREEZESTATUS represents a sprite (from the table below), so that if sprites 1 and 8

collided, for example, then FREEZESTATUS would be 129. The program would then check each

relevant sprite’s coordinates (by referring to SPRITEX and SPRITEY) and establish whether a

genuine collision has occurred and take appropriate action. Any sprites which were not involved

in a genuine collision can be restarted with STARTSPRITE. Once the collision has been processed

another SPRITEFREEZE command must be issued so that the process can commence again.

Specifying SPRITEFREEZE (0) is a special case which will inhibit any future interrupts due to sprite

collisions.

Sprite Mask bit value

1 1

2 2

3 4

4 8

8 16

16 64

32 128

Speeding up sprite movement

There are two ways of moving sprites rapidly around the screen. The first is to specify a large

increment in the MOVESPRITE command so that sprites will ‘jump’ a large distance each frame.

(A frame is normally 1/60 of a second). For example, specifying an increment of 1024 will result

in sprites moving 4 pixels per frame. The drawback of this approach is twofold - first, the sprites

look ‘jerky’; secondly, a sprite which moves in large increments may jump over an obstacle that

it was supposed to collide with.

The other approach is to speed up the rate of interrupts. The reason for this is that MOVESPRITE

works by using an ‘interrupt routine’ in the G-Pascal interpreter which normally gains control

every 1/60 of a second. This routine is responsible for moving sprites around. If this routine is

accessed more frequently then sprites will move faster. For example, if interrupts are processed

every 1/120 of a second, then sprites will move twice as fast as usual. This will also provide

smoother animation than the technique of using larger increments described above.

G-Pascal

73 | P a g e

The way to speed up interrupts is to change location $DC05 in memory with a MEMC statement.

(This is the high-order byte of Timer A in CIA 1). lt normally contains $42 (decimal 66). Therefore

to makes sprites move twice as fast you would say: MEMC [$DCO5] := 33;

There are some drawbacks to speeding up sprites in this way - the first is that the more frequent

interrupts mean that less processing power is available for the program. This becomes a greater

problem the faster the interrupts. For example, if location $DC05 was changed to 1, then the

processor would spend most of its time processing interrupts and very little time running your

program.

The other drawback to speeding up sprites is the problem of collision detection (again). The VIC

chip only detects a collision between two sprites when the collision is actually drawn on the

screen. If two sprites pass through each other very quickly, then they may have separated

before the collision is drawn on the screen (TVs redraw the screen about every 1/25 of a

second). If the collision is not drawn, then it is not detected. This will lead to timing-dependent

bugs - sometimes the collision will be detected (because the raster line happens to be drawing

that part of the screen at the time), and sometimes it won't.

MISCELLANEOUS GRAPHICS COMMANDS

The commands and functions described below do not specifically apply to sprites - they provide

control over other aspects of the Commodore 64 display and graphics capabilities such as

making changes to the display between frames (WAIT), smooth scrolling (SCROLL), hi- resolution

(bitmapped) graphics (CLEAR and PLOT), positioning the cursor on the screen (CURSOR), reading

the paddles (PADDLE), reading the joysticks (JOYSTICK), setting the clock and reading it

(SETCLOCK and CLOCK) and so on.

WAIT (raster-number);

This command suspends operation of your program until the raster on the screen reaches the

nominated line. (The ‘raster’ refers to the actual line currently being drawn on the TV screen).

The use of this command is to temporarily delay making some change to the display until the TV

is between ’frames’ and therefore eliminate any flickering that might occur if the change was

made in the middle of a frame. For example, page flipping (changing the area of memory from

which data is displayed) would best be carried out between frames. Also, changing border or

background colour (especially if done in quick succession) looks better if it is done between

frames. The last raster line on the screen is normally 250, so saying:

WAIT (251);

would allow changes in the visible area to be carried out between frames. If you wish to change

the border colour you may want to wait until about line 285 to avoid the change appearing on

the screen. Note that as the TV screen is refreshed quite quickly it is important to make the

change that you want directly after the WAIT command. If too many other instructions

intervene, then the TV may have commenced drawing the next frame before you make your

change.

The WAIT command can also be used to make a change halfway down the screen as in the

G-Pascal

74 | P a g e

following example. However, this technique should be used with caution as the program is

interrupted by the monitor every 1/60 of a second for keyboard scanning, automatic sprite

movement, etc. which means that you cannot be guaranteed that the program will make a

change at exactly the same line on the screen every time. Key in the following example and you

will see what we mean. This example displays a three-colour border (something which is

normally not possible).

const

 bordercolour = 11;

 red = 2;

 green = 5;

 yellow = 7;

 false = 0;

begin

 repeat

 wait (285);

 graphics (bordercolour, red);

 wait (90);

 graphics (bordercolour, green);

 wait (180);

 graphics (bordercolour, yellow);

 until false;

end.

{{ Available on disk as demo wait 01 }}

If you run this example you will see the border in three different colours.

G-Pascal

75 | P a g e

The ’shimmering’ effect at the edges of each colour is caused by the program being interrupted

every 1/6O of a second by the monitor. The shimmering is relatively infrequent because a lot of

the time the interrupts occur when they do no harm, namely when a colour change is not about

to occur. The shimmering could be stopped altogether by disabling interrupts, however if this is

done then no keyboard scanning takes place, and the MOVESPRITE command will not work.

PLOT (colour-type, x, y);

The PLOT command plots a point in bit-mapped (high-resolution graphics) mode. The program

should have selected bit-map mode previously (e.g. GRAPHICS (BITMAP, ON); or unpredictable

(and disastrous) results may occur.

The x and y co-ordinates of the point to be plotted are given.

The y co-ordinate should be in the range 0 to 199 or a run-time error will occur.

The x co-ordinate should be in the range 0 to 319 (normal mode) or 0 to 159 (multi-colour

mode) or a run-time error will occur.

The ’colour—type’ refers to the type of plotting that will take place. In normal mode (not multi-

colour) the colour—type can only be 0 or 1. To plot a point the colour-type should be I, to erase

a previously plotted point the colour-type should be 0. In multi-colour mode the colour-type can

be from 0 to 3.

In this case,

0 will show the background colour,

1 the upper 4 bits of the corresponding byte of screen memory,

2 the lower 4 bits of the corresponding byte of screen memory,

3 the corresponding colour nibble.

See the Commodore 64 Reference Manual for more details about how multi-colour mode

works.

Prior to using the PLOT command, the location of character memory should be set to $2000,

bitmap mode selected, and a CLEAR command issued to blank out the high-resolution graphics

area. (High resolution plotting actually occurs in character memory, not screen memory).

e. g.
GRAPHICS (bitmap, on, chargenbase, 4);

CLEAR (colour1, colour2);

See the example over the page which shows how to get ready for PLOTting.

CLEAR (foreground-colour, background-colour);

The CLEAR command clears the area used by bit-mapped (high-resolution) graphics prior to

doing PLOT commands.

WARNING: BEFORE ISSUING A CLEAR COMMAND YOU SHOULD CHANGE THE LOCATION OI-'

CHARACTER MEMORY T0 4.

This is because bit-mapped graphics uses an BK block of memory for the data about which dot is

plotted where on the screen. The 8K block of memory is determined by the location of character

memory. If character memory is less than 4 there will be interference between the ROM images

and your bit- mapping. If character memory is greater than 4 you will ’clobber’ parts of your G-

G-Pascal

76 | P a g e

Pascal program. Also, before issuing a CLEAR command you must be in bit-map mode, otherwise

a run-time error will occur.

When issuing the CLEAR command, you specify two colours. In normal bit-mapped mode (not

multi-colour) the first colour is the foreground colour - that is the colour of any points that are

plotted. The second colour is the background colour — that is the colour of any points that are

not plotted (or plotted as zero). In multi-colour mode the first colour appears if you plot using a

colour-type of 1, the second colour appears if you plot using a colour-type of 2. If you want finer

control of colours than that you will have to change screen memory or colour memory yourself

using the MEMC command.

Here is a simple example illustrating the use of bit-mapped graphics:

CONST

 BITMAP = 1;

 CHARGENBASE = 8;

 BLACK = 0;

 YELLOW = 7;

 ON = 1;

VAR

 X : INTEGER ;

BEGIN

 GRAPHICS (BITMAP, ON, CHARGENBASE, 4);

 CLEAR (YELLOW, BLACK);

 FOR X := 1 TO 190 DO

 PLOT (ON, X, X);

 REPEAT UNTIL GETKEY ;

END .

{{ Available on disk as demo clear 01 }}

This example will plot a yellow line on a black background and then wait until a key is pressed

before finishing.

You can experiment with different colours by changing the CLEAR command.

G-Pascal

77 | P a g e

SCROLL (x-offset-pixels, y-offset-pixels I;

The SCROLL command achieves smooth scrolling by changing the hardware scroll registers in the

VIC chip. To provide full scale smooth scrolling, especially in the sideways direction requires

machine-code subroutines and falls beyond the scope of G-Pascal, particularly as requirements

vary from game to game. However, the SCROLL command can be used for some special effects,

as well as smooth scrolling of text onto the screen as in the example below. In this example the

procedure ‘scrollit’ is called when smooth scrolling is required at the end of a line instead of the

standard carriage return.

CONST

 HOME = 147;

 LINES25 = 5;

 FALSE = 0;

 OFF = FALSE;

PROCEDURE SCROLLIT;

VAR

 PIXEL : INTEGER ;

BEGIN

 IF CURSORY = 25 THEN BEGIN

 (* AT BOTTOM OF SCREEN *)

 FOR PIXEL := 6 DOWNTO 0 DO BEGIN

 WAIT (251);

 SCROLL (0, PIXEL);

 END ;

 WAIT (251);

 SCROLL (0, 7);

 END ;

 WRITELN ;

END ; (* PROC SCROLLIT *)

BEGIN (* MAIN PROGRAM *)

 WRITE (CHR (HOME));

 GRAPHICS (LINES25, 1);

 CURSOR (25, 1);

 REPEAT

 WRITE ("HERE IS A SCROLLING DEMO");

 SCROLLIT;

 UNTIL FALSE

END .

{{ Available on disk as file demo scroll 01 }}

Other special effects can be achieved by using the SCROLL command to 'jiggle’ the screen in the

x and y directions, for example during an ’explosion’.

Note the use of the WAIT command in the above example which forces the scrolling to occur

during screen frames, otherwise the scrolling may be jerky and thin black lines may appear on

G-Pascal

78 | P a g e

the screen.

SCROLLX

The SCROLLX function returns the current amount of scrolling in the x direction, in pixels.

SCROLLY

The SCROLLY function returns the current amount of scrolling in the y direction, in pixels.

CURSOR (line, column);

The CURSOR command is used to position the cursor on the screen in preparation for a READ or

WRITE command. The line should be in the range 1 to 25, and the column should be in the range

1 to 40, or a run-time error will occur.

CURSORX

CURSORX is a function which returns the current column of the cursor.

CURSORY

CURSORY is a function which returns the current line of the cursor.

SETCLOCK (hours, minutes, seconds, tenths);
To set the built-in time-of-day clock use the SETCLOCK command. The clock keeps accurate time

to the nearest tenth of a second, regardless of what else the program is doing. You can use the

clock to keep track of the actual time of day (in which case the operator would need to enter the

time initially), or just as an elapsed time counter, in which case you would just need to set the

clock to zeroes initially. The time is stored in 24-hour format, so to set the time at 1.30 p.m. you

would say:
SETCLOCK (13, 30, 0. O);

CLOCK (whichtime);

The CLOCK function returns the contents of the time-of-day clock. ’Whichtime’ is an argument

specifying which part of the time is required, as follows:

Whichtime Time returned

I Tenths of a second

2 Seconds

3 Minutes

4 Hours

In order to facilitate accurate time reading, the output of the clock is ‘frozen’ when the hours

are read, and resumes when the tenths of a second are read. (Although the clock itself

continues to keep accurate time). Therefore you should read the hours first and the tenths last.

If you only want to time short intervals (e.g. 30 seconds) then you can ignore this feature - just

read the seconds. Here is an example of using the clock:

G-Pascal

79 | P a g e

CONST

 FALSE = 0;

 TENTHS = 1;

 SECONDS = 2;

 MINUTES = 3;

 HOURS = 4;

 COL = 1;

 ROW = 25;

BEGIN

 SETCLOCK (12, 59, 55, 0);

 REPEAT

 CURSOR (ROW, COL);

 WRITE (CLOCK (HOURS), ":");

 WRITE (CLOCK (MINUTES), ":");

 WRITE (CLOCK (SECONDS), ".");

 (* TRY BELOW LINE WITH 1 SPACE *)

 WRITE (CLOCK (TENTHS), " ");

 UNTIL FALSE;

END .

{{ Available on as file demo clock 01 }}

Game Ports

PADDLE (gameport);
The PADDLE function returns the value of an analogue paddle or analogue joystick plugged into

the nominated game port (1 or 2). As two paddles plug into one game port there are in fact two

values returned, both from 0 to 255. The way this is done is that one of the values is multiplied

by 256 and added to the second value. The example below shows how to extract both values:
CONST

 FALSE = 0;

VAR

 PADDLE1,

 PADDLE2,

 RESULT : INTEGER ;

BEGIN

 REPEAT

 CURSOR (25, 1); (* BOTTOM LEFT *)

 RESULT := PADDLE (1); (* READ GAME PORT 1 *);

 PADDLE1 := RESULT AND $FF;

 PADDLE2 := RESULT SHR 8;

 WRITE (PADDLE1, " ", PADDLE2, " ");

 UNTIL FALSE;

END .

IOYSTICK (gameport);
The JOYSTICK function returns a value corresponding to which direction a digital joystick is

pointing and whether the joystick fire button is pressed or not, or whether or not the buttons on

G-Pascal

80 | P a g e

the paddles are depressed. ’Gameport' is specified as 1 or 2, depending on which port the

paddles or joystick are plugged into. It is preferable to use port 2, as port 1 is shared with the

keyboard - in other words, using a joystick plugged into port 1 makes the operating system think

you have typed a key on the keyboard as you operate the joystick (this is undesirable in

programs that use both the joystick or paddles and the keyboard). When using a digital joystick

the values returned are as follows:

 Action Value

Up: 1

Down: 2

Left: 4

Right: 8

Fire button: 16

It is possible for more than one switch inside the joystick to be activated at once in which case

the values are added together (for example pushing the joystick up and to the right returns the

value 9). Also if the ‘fire’ button is pressed then the value 16 will be added to any other values

returned. Individual values can be isolated by ANDing the desired value with the JOYSTICK

function.

For example, to see whether the fire button on joystick 2 is pressed, regardless of which

direction

the joystick is pointing:
IF JOYSTICK (2) AND 16 THEN

If paddles are plugged into the game port then the paddle fire buttons return values as follows:

First paddle: 4

Second paddle: 8

G-Pascal

81 | P a g e

G-PASCAL SOUND EFFECTS
G-Pascal provides extensive support for the SID (Sound Interface Device) chip inside the

Commodore 64. There are two main commands that are used for this purpose - the SOUND

command which controls all voice-independent actions (such as overall volume, filtering, and

delays between notes), and the VOICE command which controls all voice- dependent actions

(such as a voice’s frequency, waveform, ADSR envelope etc.).

The SOUND command
The SOUND command is a general-purpose command which accomplishes 9 different actions.

The SOUND command is supplied with pairs of arguments, where the first is the action number

and the second is the value to be passed to the action routine. For example: SOUND (filterfreq,

1000, volume, 15, bandpass, on);

For ease of comprehension, and to make your programs self~ documenting, we strongly suggest

that the action numbers be defined in a series of CONST definitions at the start of the program,

as shown below. (See the discussion under ‘The GRAPHICS command’ for more detail about this

technique).

CONST

 CLEAHSID = 1;

 FILTEHFREQ = 2;

 DELAY = 3;

 VOLUME = 4;

 RESONANCE = 5;

 LOWPASS = 6;

 BANDPASS = 7;

 HIGHPASS = B;

 CUTOFFVOICE3 = 9;

 ON = 1;

 OFF = O;

SOUND (CLEARSID, 0);

This command clears the SID (Sound Interface Device) chip, resetting all parameters (volume,

frequencies, waveforms etc.) to zero. It is primarily used to ‘start from scratch’. G-Pascal

automatically clears the SID chip at the start and the end of each run. The second argument to

the CLEARSID action is a ‘dummy’ (in other words it is ignored) so just specify it as zero.

SOUND (FILTERFREQ, frequency);

Used to specify the cut-off frequency of the filter. The frequency ranges from 0 to 2047.

SOUND (DELAY, period);

Used to cause the program to wait (delay) for the nominated period of time. The period is

specified as 1/100t.hs of a second. When a DELAY command is issued the program is suspended

(does nothing) until the nominated period elapses (although any sprites moving under

MOVESPRITE control will continue to move).

G-Pascal

82 | P a g e

While the program is suspended by a DELAY the RUN/STOP key will not stop the program, nor

can Debug or Trace mode be initiated. The only way to stop the program is by pressing RLlN/

STOP and RESTORE simultaneously.

The normal use for the DELAY command is to separate notes in a musical piece by precise

intervals, however it could also be used for other special effects unrelated to music, such as

slowly displaying text on the screen.

The example below illustrates playing voice 1 for a second:

VOICE (1, PLAY, ON);

SOUND (DELAY, 100);

VOICE (1, PLAY, OFF);

SOUND (VOLUME, volume-level);

Used to set the overall volume output. Volume ranges from O (no sound) to 15 (full volume).

SOUND (RESONANCE, resonance-level);

Used to set the level of resonance of the filter. Resonance ranges from 0 (no resonance) to 15

(full resonance).

SOUND (LOWPASS, ON);

Directs the output of selected voices through the Iowpass filter. Whether a particular voice is

filtered or not is controlled by the VOICE command. This is used in conjunction with the

FILTERFREQ and RESONANCE actions described above.

Can be used in conjunction with BANDPASS and HIGHPASS filtering.

SOUND (LOWPASS, OFF);

Tums off the lowpass filter.

SOUND (BANDPASS, ON);

Directs the output of selected voices through the bandpass filter. Whether a particular voice is

filtered or not is controlled by the VOICE command. This is used in conjunction with the

FILTERFREQ and RESONANCE actions described above.

Can be used in conjunction with LOWPASS and HIGHPASS filtering.

SOUND (BANDPASS, OFF);

Turns off the bandpass filter.

SOUND (HIGHPASS, ON);

Directs the output of selected voices through the highpass filter. Whether a particular voice is

filtered or not is controlled by the VOICE command. This is used in conjunction with the

FILTERFREQ and RESONANCE actions described above.

Can be used in conjunction with LOWPASS and BANDPASS filtering.

SOUND (HIGHPASS, OFF);

G-Pascal

83 | P a g e

Turns off the highpass filter.

SOUND I CUTOFFVOICE3, ON);

Disconnects Voice 3 from the audio path. Used if Voice 3 is only being used for special effects

such as random number generation and is not intended to be heard.

SOUND (CUTOFFVOICE3, OFF);

Reconnects Voice 3 to the audio path (the default condition).

CONST

 FILTERFREQ = 2;

 VOLUME = 4;

 RESONANCE = 5;

 HIGHPASS = 8;

 ON = 1;

 OFF = 0;

 FREQUENCY = 1;

 WIDTH = 2;

 FILTER = 3;

 SUSTAIN = 6;

 PLAY = 8;

 PULSE = 13;

VAR

 FREQ : INTEGER ;

BEGIN

 SOUND (VOLUME, 15, RESONANCE, 15, HIGHPASS, ON);

 VOICE (1, FREQUENCY, 8583);

 VOICE (1, WIDTH, 2048);

 VOICE (1, FILTER, ON);

 VOICE (1, SUSTAIN, 15);

 VOICE (1, PULSE, ON);

 VOICE (1, PLAY, ON);

 FOR FREQ := 0 TO 2047 DO

 SOUND (FILTERFREQ, FREQ);

 FOR FREQ := 2047 DOWNTO 0 DO

 SOUND (FILTERFREQ, FREQ);

 END .

{{ Available on disk as file demo sound 01 }}

This program plays ‘middle C’ and then changes the filtering while the note is playing, to

demonstrate the effects of different filter frequencies.

 {{ Available on disk as file demo sound 01 }}

The VOICE command
The VOICE command provides control over the characteristics of each voice. It is a general-

purpose command which accomplishes 15 different actions. The VOICE command accepts

G-Pascal

84 | P a g e

arguments in groups of three - the first is always the voice number, from 1 to 3. The second is

the action number and the third is the value to be passed to the action routine. For example:
VOICE (1, frequency, 4291, 1, triangle, on, 1, play, on);

For ease of comprehension, and to make your programs self- documenting, we strongly suggest

that the action numbers be defined in a series of CONST definitions at the start of the program,

as shown below. These would normally be added to the definitions for the SOUND command.

(See the discussion under ‘The GRAPHlCS command’ for more detail about this technique).

CONST

 FREQUENCY = 1;

 WIDTH = 2;

 FILTER = 3;

 ATTACK = 4;

 DECAY = 5;

 SUSTAIN = 6;

 RELEASE = 7;

 PLAY = 8;

 SYNC = 9;

 RINGMOD = 10;

 TRIANGLE = 11;

 SAWTOOTH = 12;

 PULSE = 13;

 NOISE = 14;

 TEST = 15;

 ON = 1;

 OFF = 0;

VOICE (voice-number, FREQUENCY, freq);

Used to define the frequency at which this voice will play. The frequency ranges from 0 to

65535. The frequencies of the top 12 ‘standard’ musical notes are given below. All of the other

frequencies can be derived by simply dividing the values given by the appropriate power of 2. In

other words, each time the frequency is divided by 2 it drops an octave.

A simple (and quick!) way of dividing by a power of 2 is to use the Shiift Right operator (SHR).

For example, to produce Middle C (which is 3 octaves below the value of C given below), just

say:
VOICE (1, FREQUENCY, 34334 SHR 3);

This means that any program that needs to use all octaves of notes need only contain the 12

frequencies given below and quicldy calculate all the others at the start of the program (or as

required).

Note Frequency

C 34334

C sharp 36376

D 38539

D sharp 40830

G-Pascal

85 | P a g e

E 43258

F 45830

F sharp 48556

G 51443

G sharp 54502

A 57743

A sharp 61176

B 64814

VOICE (voice-number, WIDTH, pulse-width);

Used to define the pulse width for the pulse waveform. Not needed (and ignored) if the pulse

waveform is not in use. The pulse width ranges from 0 to 4095. A pulse width of 2048 gives a

square wave (which has a rich sound). A pulse width of 0 or 4095 will give an inaudible sound.

The further that the pulse width goes from 2048 (higher or lower) the ‘thinner’ the sound will

become - it will be less rich in harmonics.

VOICE (voice-number, FILTER, ON);

Directs this voice through the filter. The filter characteristics, frequency and so on are selected

through the SOUND command. If no filtering has been selected by the SOUND command then

tuning filtering on here will effectively silence the voice.

VOICE (voice-number, FILTER, OFF);

Bypasses the filter for this voice. The voice will be heard regardless of the filter settings.

VOICE (voice-number, A'l'I‘ACI(, rate);

Sets the attack rate for this voice. The attack rate is the rate at which the volume level rises

when the voice is played. It ranges from 0 (2 milliseconds) to 15 (8 seconds).

VOICE (voice-number, DECAY, rate);

Sets the decay rate for this voice. The decay rate is the rate at which the volume level drops to

the sustain level once the attack cycle is complete. It ranges from O (6 milliseconds) to 15 (24

seconds).

VOICE (voice-number, SUSTAIN, level);

Sets the sustain level for this voice. The sustain level is the volume level of this voice once the

attack and decay cycles have completed. The voice will remain at this level until it is released.

VOICE (voice-number, RELEASE, rate);

Sets the release rate for this voice. The release rate is the rate at which the volume level drops

(to nil) once the note is released. It ranges from 0 (6 milliseconds) to 15 (24 seconds).

VOICE (voice-number, PLAY, ON);

Plays this voice. As soon as this command is executed the attack cycle for this voice will commence.

VOICE (voice-munber, PLAY, OFF);

G-Pascal

86 | P a g e

Releases this voice. As soon as this command is executed the release cycle for this voice will

commence (assuming that it was previously played).

VOICE (voice-number, SYNC, ON);

Synchronizes the fundamental frequency of the nominated voice with another

one.

If the voice number is 1, it is synchronized with voice 3.

If the voice number is 2, it is synchronized with voice 1.

lf the voice number is 3, it is synchronized with voice 2.

VOICE (voice-number, SYNC, OFF);

Turns off synchronization between this voice and another.

VOICE (voice-number, RINGMOD, ON);

Ring modulates the triangle waveform output of the nominated voice with another one. For ring

modulation to be audible this voice must have triangle waveform selected, and the other voice

must have a non-zero frequency.

If the voice number is 1, it is ring modulated with voice 3.

If the voice number is 2, it is ring modulated with voice 1.

If the voice number is 3, it is ring modulated with voice 2.

VOICE (voice-number, RINGMOD, OFF);

Turns off ring modulation between this voice and another.

VOICE (voice-number, TRIANGLE, ON);

Selects the triangle waveform for this voice.

VOICE (voice-number, TRIANGLE, OFF);

De-selects the triangle waveform for this voice.

VOICE (voice-number, SAWTOOTH, ON);

Selects the sawtooth waveform for this voice.

VOICE (voice-number, SAWTOOTH, OFF);

De-selects the sawtooth waveform for this voice.

VOICE (voice-number, PULSE, ON);

Selects the pulse waveform for this voice. The size of the pulse (pulse width) is controlled by the

WIDTH action described above.

VOICE (voice-number, PULSE, OFF);

De-selects the pulse waveform for this voice.

VOICE (voice-number, NOISE, ON);

G-Pascal

87 | P a g e

Selects the noise waveform for this voice. Can be used to produce rumbling sounds or ‘white

noise’ depending on the frequency selected for this voice. Also, noise must be selected for voice

3 for the RANDOM function to correctly return random numbers. Noise should not be selected

whilst other waveforms are active or the noise generator may ‘lock up’. In this case the only way

to re-activate noise is to select the TEST mode described below.

VOICE (voice-number, NOISE, OFF);

De-selects the noise waveform for this voice.

NOTE: It is NOT recommended that more than one waveform be selected at once. To change

from triangle to pulse, for example, we recommend de-selecting triangle first, then selecting

pulse.

VOICE (voice-number, TEST, ON);

Selects ‘test’ mode for this voice - effectively silencing it. This action would not normally be

used. The normal way to silence a voice is to allow its ADSR envelope to silence it, or possibly to

de- select all waveforms.

VOICE (voice-number, TEST, OFF);

De-selects ‘test’ mode for this voice (the default condition).

CONST

 VOLUME = 4;

 CUTOFFVOICE3 = 9;

 ON = 1;

 OFF = 0;

 FREQUENCY = 1;

 SUSTAIN = 6;

 PLAY = 8;

 SAWTOOTH = 12;

 NOISE = 14;

VAR

 FREQ : INTEGER ;

BEGIN

 SOUND (VOLUME, 15, CUTOFFVOICE3, ON);

 VOICE (3, FREQUENCY, 10);

 VOICE (3, NOISE, ON);

 VOICE (1, SUSTAIN, 15);

 VOICE (1, SAWTOOTH, ON);

 VOICE (1, PLAY, ON);

 REPEAT

 VOICE (1, FREQUENCY, RANDOM * 200);

 UNTIL 0;

END .

{{ This program is on disk as demo voice 01 }}

G-Pascal

88 | P a g e

This program plays random frequencies at the rate of 10 per second. To change the rate of frequency

changes try modifying the '10’ in the clause: VOICE (3, FREQUENCY, 10, to something else.

Sound effect functions
RANDOM

The RANDOM function returns the current output of voice 3 (upper 8 bits). This results in a

number from 0 to 255. The character of these numbers is directly related to the waveform

selected for voice 3.

When waveform selected the number will:

‘triangle’ will increment from 0 to 255, then decrement back to 0.

‘sawtooth’ will increment from 0 to 255 then jump back to 0.

’pulse’ will jump between 0 and 255.

‘noise’ will vary randomly.

In all cases, the rate at which the numbers change is dependent on the frequency of voice 3. The

output of RANDOM will be valid, regardless of whether or not voice 3 is actually gated (playing).

In other words, you do not have to say: VOICE (3, PLAY, ON) for RANDOM to contain

valid data.

The most common use of this function is as a random number generator (hence its name)

however by selecting, say, a triangle waveform and using the result to modify the frequency of

another voice special effects such as a ‘siren’ sound could be achieved.

If using RANDOM for random numbers the minimum ‘conditioning’ required for their generation

is:
VOICE (3, NOISE, ON, 3, FREQUENCY, 10000);

If the noise is not intended to be heard by the user then SOUND (CUTOFFVOICE3, ON) could be

selected as described under the SOUND command (alternatively just leave the overall volume at

zero). However if you are writing a game with sound effects and random numbers then use

voice 3 for noise (such as

explosions, footsteps etc.) which will automatically provide random numbers through RANDOM

at the same time.

The only caution in using RANDOM for random numbers is that a high enough frequency is

selected. The random numbers change at the nominated frequency, so if a frequency of 1 is

chosen, for example, the random numbers would only change once a second.

ENVELOPE
ENVELOPE returns the output of the voice 3 envelope generator (ADSR envelope). This will

return a number from 0 to 255 reflecting the current volume of voice 3 as controlled by the

Attack, Decay, Sustain and Release (ADSR) parameters.

Voice 3 must be played in order to trigger the ADSR cycle. The output from ENVELOPE can be

added to the filter frequency or fundamental frequency of other voices for special effects.
CONST

 FREQUENCY = 1;

G-Pascal

89 | P a g e

 NOISE = 14;

 ON = 1;

BEGIN

 VOICE (3, NOISE, ON);

 VOICE (3, FREQUENCY, 50000);

 REPEAT

 WRITELN (RANDOM + RANDOM SHL 8);

 UNTIL 0;

END .

{{ Available on disk as file demo envelope 01 }}

This program generates random numbers in the range O to 65535 and displays

them on the screen.

G-Pascal

90 | P a g e

INDEPENDENT MODULES
A powerful feature of G-Pascal is the ability to compile procedures and functions independently

and ’link’ them together at nin time. This is made particularly easy because the P-codes

generated by the compiler are completely ‘relocatable’. That is to say that they may be run at

any address, regardless of where they were compiled, without change.

Advantages of independent modules

1. As P-codes are typically only a half to a third of the size of the corresponding source code, larger

programs may be run if they are compiled in ’Pieces’.

2. Groups of logically related subroutines may be placed in an independent module and then used

by a number of other programs — for example you could put all your ’file handling’ routines in

an independent module. Then it you needed to change the way you access files you only have to

change one module rather than perhaps dozens of programs.

3. You can implement an ‘overlay’ structure - in other words, various different modules can be

loaded to the same address (not all at the same time of course!) thereby saving memory space.

For example, if you are implementing a big adventure game you might have the first halt of the

game in module ‘A’ which loads at address $1000, and then at the appropriate time load module

‘B’ to address $1000 instead.

How to implement independent modules

1. Compile the module or modules and save them to disk or cassette using the <O>bject option in

the files menu.

2. Compile the ‘main’ program and include ‘dummy’ procedure declarations for the independent

modules in the form:

PROCEDURE EXTRAROUTINES (AHG1, AFIG2, AHG3); $1003;

This tells the compiler that the named procedure will be loaded as an independent

module, and to execute it at address $1003.

3. The main program should load the module’s P-codes before invoking the module. Alternatively,

the independent modules could be compiled at the required address directly by using the %A

compiler directive. The module should be loaded or compiled at an address three bytes below

where it is to be executed at. The reason for this is that a G-Pascal program always starts with a

3-byte ‘jump’ instruction

to the ‘main line’ - that is, the first instruction to be executed. Therefore the first procedure in

the program starts 3 bytes in from the actual address at which the program is loaded.

The examples following should clarify this point.

Multiple procedures in one module
As procedures can be nested within procedures a ‘module’ can consist of many actual

procedures or functions. In this case a typical approach is to supply at least one argument which

G-Pascal

91 | P a g e

is a ‘procedure number’ which would be used in a CASE statement to direct control to the

correct sub-procedure.

EXAMPLES OF INDEPENDENT MODULES
We will illustrate the use of independent modules with a simple example, and then a more complicated

example which will make greater use of the potential of these modules,

Example 1

The independent module
(* %A $1000 *)

PROCEDURE PLAYSOMEMUSIC (PITCH, DURATION);

CONST DELAY = 3;

VOLUME = 4;

FREQUENCY = 1;

SUSTAIN = 6;

PLAY = 8;

TRIANGLE = 11;

on = 1;

OFF = 0;

BEGIN

 SOUND (VOLUME, 15);

 VOICE (1, FREQUENCY, PITCH,

 1, TRIANGLE, ON,

 1, SUSTAIN, 15,

 1, PLAY, ON);

SOUND (DELAY, DURATION);

VOICE <1, PLAY, OFF)

END;

BEGIN (* start of ‘main line’ - this will not be executed *)

END.

The above module is compiled first - the %A option automatically puts it at location $1000.

The ‘Main Program’
CONST FALSE = 0;

VAR I, J I INTEGER;

PROCEDURE PLAYSOMEMUSIC (ARG1, ARG2); $1003;

BEGIN

J := 10;

REPEAT

FOR I := 1 TO 10 DO

 PLAYSOMEMUSIC (I * 1000, J);

FOR I := 10 DOWNTO 1 DO

 PLAYSOMEMUSIC (I * 1000, J)

UNTIL FALSE;

END.

G-Pascal

92 | P a g e

(You may want to try this example yourself. As well as illustrating independent modules it plays quite an

interesting tune.)

The above illustrates a couple of important points:

1. The module was compiled 3 bytes below where it was called.

2. The ‘dummy’ declaration for the module in the main program had the same number of

arguments (2) as the actual declaration in the module.

Example 2

Now we'll illustrate some more complicated aspects of independent modules, namely:

1. ‘Common’ data areas.

2. Nested procedures.

3. One independent module calling another.

Module 1
VAR A, B, C, D I INTEGER;

FRED : ARRAY [50] OF CHAR;

PROCEDURE MODULE1;

BEGIN

 (* This module has no arguments *)

 A := B; (* code for module 1 *)

END;

BEGIN END. (* dummy mainline *)

This module would be compiled and the object saved to disk or cassette using the (O)bject option in the

Files Menu as ”MOD1.0B]".

Module 2
VAR A, B, C, D : INTEGER;

FRED : ARRAY [50] OF CHAR;

PROCEDURE MODULE1; $1003; (* refer to first module *)

PROCEDURE MODULE2 (ACTION, ARG1, ARG2, ARG3);

PROCEDURE FIRSTACTION;

BEGIN

 MODULE1; (* call other independent module *)

 A := B — C

END;

PROCEDURE SECONDACTION (X, Y);

BEGIN

 D := X " Y

END;

BEGIN (* actual start of module 2 code *)

 CASE ACTION OF (* choose a sub-module *)

 1 :FlRSTACTlON;

 2 :SECONDACTlON (ARG1, ARG2) (* pass parameters *)

 END; (* of case *)

G-Pascal

93 | P a g e

END; (* of module 2 procedure *)

BEGIN END. (* dummy mainline *)

This module would be compiled and the object saved to disk or cassette using the (O)bject option in the

Files Menu as ”MOD2.0B]".

Main program
CONST

 DISK = 8;

 LOADFLAG =0;

VAR

 A, B, C, D : INTEGER;

 FRED : ARRAY [50] OF CHAR;

PROCEDURE MODULE1; $1003; (* refer to module 1 *)

PROCEDURE MODULE2 (ACTION, ARG1, ARG2, ARG3); $2003; (* refer to

module 2 *)

BEGIN (* start of actual program *)

 LOAD (DISK, $1000, LOADFLAG, "MOD1.0BJ");

 LOAD (DISK, $2000, LOADFLAG, “MOD2.0BJ"); (* load modules *)

 MODULE1; (* invoke module 1 *)

 MODULE2 (1, 5, 6, 0) (* invoke module 2 *)

END. (* of program *)

This illustrates one module calling another. When using modules, it is obviously important to

load them at the address that you have told the compiler that you are going to (minus 3)

otherwise strange results may occur. Modules may share ‘common’ (global) data provided that

the same data declarations occur in each module and the calling program. This works because

the compiler allocates all variables as ‘stack relative’ - in other words their actual addresses in

memory are not known until it knows where the run-time stack is going to be. Therefore,

identical data declarations in different modules will result in the compiler allocating identical

stack relative addresses within each module - and the modules can then each refer to each

other’s data areas. If a particular module needs more ’work areas’ then these should

be allocated after the procedure declaration (local data) and these will only be in force during

the invocation of the procedure.

G-Pascal

94 | P a g e

HOW TEXT IS STORED BY G-PASCAL
This section describes the format of G-Pascal source files for those users that wish to use them

with other editors or word processors. Each source line is stored in sequence, and ends with a

carriage return (hex OD). Line numbers are not stored in the program - these are automatically

generated by the Editor and Compiler when listing the program. The end of the program is

indicated by a ‘null’ following the last carriage return. In other words, the last two bytes of the

program are hex ODOO.

Occurrences of two or more spaces are converted to a special code. This consists of a ’dle’

character (hex 10) followed by a one- byte space count with the high-order bit set. The high

order bit is set so that the editor does not confuse 13 spaces with a carriage return. For

example, 4 consecutive spaces would be stored as hex 1084. (hex 10 followed by hex 04 + hex

80).

All reserved words (e.g. BEGIN, END, DEFINESPRITE, CURSOR etc.) are ‘tokenized’ as they are

keyed in and stored as a single byte in order to save space.

Also, the system assumes that all reserved words are followed by a space, so the space is not

stored and a space is always displayed after a reserved word. This makes it impossible to have

punctuation directly following a reserved word. (You may key in the punctuation directly after

the word, for example: END; however, it will be displayed as END ;).

This tokenization means that PROCEDURE occupies one byte instead of 10 bytes (allowing for

the space that follows the word PROCEDURE). lf you wish to ’de-tokenize’ your program

(perhaps to use with an external word processor or editor) then run the following program

which reveals the token equivalents (in decimal) of each reserved word:

VAR

 WORD : INTEGER ;

BEGIN

 MEMC [$49] := 0;

FOR WORD := $81 TO $FF DO

 IF (WORD < $B0) OR (WORD > $DE) THEN

 WRITELN (".QUIVALENT OF ", WORD, " IS ", CHR (WORD));

END .

Any user-written detokenization program should make allowance for the tact that tokenization

is not done within quotes as the characters used for reserved words are in some cases the same

as the graphics symbols.

For example, try entering a line in the Editor by pressing the ‘Commodore’ key and ‘T’

simultaneously. It will display a graphics character (thin horizontal bar).

Now list that line and the word 'cursor’ will appear.

Now repeat the process, this time putting the graphics symbol inside quotes. This time it will list

correctly. This demonstrates that the internal listing routines display the same character

differently depending on whether or not it is inside quotes.

Programs that have been entered using an independent editor (not the G-Pascal built-in Editor)

will successfully compile as the G-Pascal compiler will recognize either its internally tokenized

reserved words or the same words spelt in full. Programs containing reserved words which are

G-Pascal

95 | P a g e

not tokenized will be automatically tokenized (and multiple spaces reduced to the 2-byte code)

as soon as a ‘Replace’ command is done in the Editor which has one or more spaces in its

replacement string. In other words,

to force tull tokenization of a program just enter:
R 1.. .

This process takes about one second per 100 lines of program code.

G-Pascal

96 | P a g e

Idiosyncrasies of tokenization
Tokenization of the source code has the benefits of increased compile speed, reduced program size

and consequently faster loading and saving from disk or cassette. It also has the advantage that

spaces can freely be used within the program yo aid readability as 10 spaces take up no more room

than 2 spaces. However, under certain (rare) circumstances the tokenization process can cause

strange behaviour by the Editor which could lead to confusion. These are described below

• A space will always be displayed after a reserved word.

• Reserved words will always be displayed in lower case, regardless of how they are entered.

As reserved words are stored internally as one byte, the Find and Replace commands in the

Editor cannot locale part of a reserved word. For example, you cannot find the ‘BEG’ in BEGIN,

or ‘PROC' in PROCEDURE. In order to correctly locate reserved words, they must be spelt in full.

To obtain a list of all reserved words run the small program described in the previous section.

• It is quite permissible to locate part of a non-reserved word, unless that part is itself a reserved

word. In other words, attempting to locate ‘FR’ will successfully locate the word ‘FRED’, however

trying to locate ‘TO’ will nut locate the word ‘TOOL’ as ‘TO’ is a reserved word.

• As multiple spaces are stored as a 2-byte code, the Find and Replace commands can only match

on the exact number of spaces (remembering that the space which is displayed following a

reserved word is not actually stored in the file and should not be counted).

• A line containing mismatched quote symbols may display strangely. For example, type in the

following line as line

1: BEGIN END REPEAT WHILE FOR DO.

Then use the Replace command to change BEGIN to a quote symbol:
R 1.BEGIN."

The reserved words will have been changed to inverse letters! Now get rid of the quote symbol

by saying:
R 1."

The reserved words will re-appear!

G-Pascal

97 | P a g e

CONVERTING FROM OTHER PASCALS
As G-Pascal is a subset of Pascal, not all of the constructs from ’full’ Pascal are available, however most

of them are either already in G-Pascal or can be ‘simulated’. This section contains hints for converting

published programs so that they will work in G-Pascal.

PROGRAM statement

The first word in a full Pascal program is:
PROGRAM programname (input, output);

G-Pascal does not need this, so omit it.

Type BOOLEAN

G-Pascal does not provide a BOOLEAN type, however if you declare:
CONST TRUE = 1; FALSE = 0:

and change the word BOOLEAN to CHAR where it appears then Booleans will work as normal. It the

result of a conditional test is zero G- Pascal considers it to be false, otherwise G-Pascal considers it to be

true.

TYPE declaration

G-Pascal does not support the TYPE declaration. However, where full Pascal might say:
TYPE COLOUR = (RED, GREEN, BLUE);

VAR FRED :COLOUR;

BEGIN

 FRED := GREEN

END.

just say in G-Pascal:
CONST RED = 0; GREEN = 1; BLUE = 2;

VAR FRED I INTEGER;

BEGIN FRED := GREEN END.

which will have the same effect.

Quotes

G-Pascal expects (*) as its string delimiter rather than (*) which is different from most other Pascals.

Type REAL

There is no REAL (floating point) type in G-Pascal. However as INT EGERs are 3 bytes and therefore

provide at least 6-digit accuracy then these suffice for most applications.

For example, a program that deals in dollars and cents could hold money amounts internally as cents,

and then print them with the decimal point in the right place like this:
write (AMOUNTI 100,”.")

if AMOUNT mod 100 < 10 then write (*O”);

writeln (AMOUNT mod 100);

Passing procedure and function arguments by address

G-Pascal

98 | P a g e

By using the ADDRESS construct with the MEM construct it is possible to pass parameters to a

procedure or function by ‘address’ (which is not directly supported by G-Pascal).

For example:
VAR

 I, J, K: INTEGER ;

PROCEDURE ADD(A, B, C);

BEGIN

 MEM [C] := A + B;

END ;

BEGIN (* MAIN PROGRAM *)

 I := 2;

 J := 3;

 ADD(I, J, ADDRESS (K));

 WRITELN ("ANSWER WAS: ", K);

END .

As the example shows, although all parameters are passed by ’value’, in the case of ‘K’ the value

is, in fact, the address of ‘K’ (by using the word ADDRESS), so that the ADD procedure, by using

the supplied address in a MEM statement, can return its result to the desired variable.

READLN, WRITELN etc.

See sections on READ, WRITE and WRITELN, under the section ’Beginner’s Guide to Pascal’ for G-

Pascal formats.

LABEL, GOTO

Not supported. Use other programming techniques.

G-Pascal

99 | P a g e

DEBUGGING
A ‘bug’ is where a program compiles without errors, but when run does one of the following:

a. Produces incorrect results;

b. Aborts with an error message (e.g. Divide by zero);

c. Goes into a ‘loop’ and appears to do nothing;

d. ‘Crashes’, possibly destroying itself and G-Pascal.

Below are suggested methods of dealing with each, however the important thing about debugging is

to keep an open mind about possible problems - ‘expect the unexpected’ so to speak. Try to refrain

from giving up and blaming G-Pascal if your program does not work - G- Pascal has been extensively

tested with many large and small programs. The likelihood of your uncovering some obscure bug in

G-Pascal is pretty remote.

Programs that produce incorrect results

lf you can’t work out why your program is not working exactly as designed try displaying

debugging information at pertinent spots in your program. You could make the displays

conditional on a ‘debugging flag’ at the start of the program so you can easily enable or disable

this debugging information by changing one line.

e.g.

CONST TRUE = 1; FALSE = 0;

 DEBUGGING = TRUE;

 (*... and further on in the program ...*)

 IF DEBUGGING THEN WRITELN (*J5 IS NOW: “, J5);

By making ’DEBUGGING’ false then your debugging WRIT]-Es would be suppressed.

Programs that abort with an error message

All aborts (including pressing RUN/STOP) display the P-code address which shows where the

program was when it aborted By referring to the P-code addresses displayed by the Compiler

you can easily locate the problem Note that after an abort GPascal waits for you to press a key

before returning to the Main Menu this is to give you a chance to read the error message

Programs that loop or hang and appear to do nothing

If you want to know what part of your program lS executing press COMMODORE/T (T = Trace)

and a Trace will start Press COMMODORE/N (N =Normal) to cancel the Trace. Whilst tracing you

will see something like the following:
(O97A) 3C 7D 09 3B

(097D) 3B 0D 00 O1

(0980) 08 81 32 00

(0981) 81 82 00 F4

(0982) 32 00 F4 FF

(0986) E4 2A 2C 00

G-Pascal

100 | P a g e

(0987) 2A 2C 00 F4

(0988) 2C 00 F4 FF

The addresses in brackets are the P-code addresses (which you can relate to the addresses in

brackets which are listed it you get a listing during a Compile). By doing this you can find which

procedure or group of instructions are being executed which should help track down the cause

of the loop. The data to the right of the P-code addresses are the actual P-codes. Not all P-codes

are 4 bytes long in which case disregard some of them For an explanation of the meaning of the

P codes see ‘Meanings of P-codes’.

Programs that ‘crash

There are two likely causes of a program going completely berserk

1. An array subscript being too big or too small,

2. Poking (with the MEM or MEMC arrays) into a piece of memory that you shouldn’t have.

If a program is behaving strangely check that all subscripts cannot exceed their declared array

bounds.

Other debugging techniques

As a last resort you can select Debug mode by either selecting Debug from the Main Menu or

pressing COMMODORE/D (D Debug) while the program is running.

Using ‘Debug’ mode

Debug mode displays information like the following

(0981) B1 32 00 F4

Stack: 95F2 = 04 01 00 0014 00 O0 05

Base: 95FF = O5 04 04 05 O5 04

(0982) 32 00 F4 FF

Stack: 95EF = 01 00 00 04 O1 00 00 14

Base: 95FF = 05 04 04 O5 05 04

(0986) E4 2A 2C 00

Stack: 95F2 = 04 01 00 O0 14 00 00 05

Base: 95FF = 05 04 04 05 05 04

The debug information appears in groups of three lines. The first line is identical to the

information displayed during a Trace and consists of the I’-code address followed by the actual

P-code being executed and its operands. The next line (‘Stackz’) shows the top 8 bytes on the

stack - this would frequently be the data being worked on - for example if you said 2 +4 in your

program you would see the '2’ on the top of the stack (leftmost 3 bytes) in the order: 02 O0 00

and then the '4’ would be pushed onto the stack so that you would then see: 04 00 00 02 00 00

and then the ‘add’ P-code would be processed, leaving '6’ on the top of the stack. The third line

(*Base:’) shows the ‘stack frame linkage data’ namely:

a. Procedure return address (leftmost 2 bytes).

G-Pascal

101 | P a g e

b. Stack frame dynamic link (middle 2 bytes) - this is the address of the stack frame of the

last activated procedure or function (prior to the current one).

c. Stack frame static link (rightmost 2 bytes) - this is the address of the stack frame of the

last procedure in the lexical order of the program.

Note that the stack and base linkage data is that before the displayed P-code is executed.

How to start Debug or Trace from within your program
To start debug mode from within the program:
 MEMC [$31] := 1; MEMC [$67] := 1;

To start trace mode from within the program:
 MEMC [$31] := 1; MEMC [$67] := $80;

To stop debug or trace from within the program:
 MEMC [$67] := 0;

CHANNEL NUMBERS

G-Pascal assumes that the disk drive responds to device number 8 and the printer to device

number 4. If your disk or printer hardware responds to different device numbers then enter,

compile and run the following program prior to attempting to access the disk or printer:

BEGIN

MEMC [$8010] := 6; (this is the printer device number *)

MEMC [$8011] := 9; (this is the disk device number *)

END.

The actual numbers used in the assignment statements above will depend on what your printer

and disk channels are. Obviously if only one device number is wrong then you need only enter

the appropriate assignment statement.

MEMORY MAP

This section describes the various memory addresses used by the G-Pascal system.

It is particularly important to be aware of memory allocation when:

• Using DEFINESPRITE to place sprite shape definitions in memory.

• Controlling the location of P-codes with the %A compiler directive.

• Using bit-mapped graphics.

• Doing page-flipping - that is, using more than one area of memory for screen memory.

• Placing machine-code subroutines in memory.

• Compiling independent modules.

From To Description

$0000 $03FF used for ‘zero page’ system and compiler work-areas, system and compile-time
stack, other system variables and system jump vectors. This area should not be
used except by experienced machine-language programmers who are aware of the
ramifications of changing these locations.

G-Pascal

102 | P a g e

$0400 $07FF used for the 1K ‘primary’ screen memory area. This area is in constant use by the
compiler for displaying the text that appears on the TV screen. While a program is
running the WRITE statement normally causes text to appear in this area.

$0800 $0FFF spare (not used by G-Pascal). This 2K area is available for machine code
subroutines, other screen memory pages (numbers 2 and 3), user-defined
character sets (character memory base number 1), DEFINESPRITE statements
(pointers 32 to 63), or P-codes (by using the %A $800 compiler directive). Of
course, it cannot be used for all of these purposes at the same time. The addresses
occupied by shapes defined with DEFINESPRITE are the pointer number multiplied
by 64 - e. g. pointer 32 is address $800 (32 * 64 = 2048 which is $800 in
hexadecimal).

$1000 $1FFF spare (not used by G-Pascal). This 4K area is available for machine-code
subroutines or I’-codes. Because the hardware ‘maps’ the character generator
images into this area during the video display phase of the system clock it is not
suitable for DEFINESPRITE images, screen memory areas, or bit- mapped graphics
areas.

$2000 $3FFF spare (not used by G-Pascal). This 8K area is available for machine-code
subroutines, P-codes, DEFINESPRITE statements (pointers 128 to 255), screen
memory pages (numbers 8 to 15), bit-mapped graphics (by setting character
memory base number to 4), or user-defined character sets (character memory
base numbers 4 to 7). Again, this area cannot be used for all these purposes at
once, however it may be possible, for example, to have some addresses allocated
to sprite shapes, some for P-codes, and some for extra screen memory pages,
provided care is taken that these areas do not overlap.

$4000 $7FFF this 16K area is used by G-Pascal to store the source program (i.e. the G-Pascal text
as it is typed in or loaded from disk or cassette). Unless the %A compiler directive
is used this area is also used to store the P-codes during the compilation process —
they are placed directly after the end of the source program.

$8000 $BFFF this 16K area used to hold the G-Pascal compiler itself and is not available for other
purposes.

$C000 $CFFF this 4K area is used for the compiler’s symbol table (during compilation) and the G-
Pascal run-time stack (storage area for variable data) during running. During
running the ‘top’ 304 bytes are used for sprite-related functions (MOVESPRITE,
ANIMATESPRITE and so on) thus leaving 3792 bytes for the run time stack. The
run-time stack actually starts at $CEDO (at time of publication) and grows
downwards.

$DO00 $D7FF this 2K area is used for I/O functions (VIC chip and SID chip).

$DB00 $DBFF this 1K area is used for Colour RAM nibbles. It is normally updated by writing to the
screen.

$DCOO $DFFF this 1K area is used for I/O functions (CIA chips and future expansion).

$E00O $FFFF this 8K area is used for the Kemal ROM (that is, the Commodore 64 operating
system which handles screen editing, loading and saving files, powerup activities
and so on).

MACHINE LANGUAGE SUBROUTINES
The novice user should skip this section.

G-Pascal

103 | P a g e

Machine-language subroutines may be called by:

CALL (address)

Remember that hexadecimal constants must be preceded by a '$’.

It is possible to set up the A, X, and Y registers and the condition codes prior to the call by

loading certain reserved memory locations (see table below). G-Pascal loads the contents of

those locations into the appropriate registers prior to calling the subroutine with a ISR

instruction and places the contents of the A, X, Y registers and condition codes into those

locations after the subroutine has exited. The machine-code subroutine should end with an RTS

instruction.

Care should be taken not to set either the ’decimal’ flag or the ’interrupt inhibit’ flag in the

condition codes register or G-Pascal will not function correctly.

The example below sends the letter ‘A’ to logical device 4.

CONST

 AREG = $2B2;

 XREG = $2B3;

 YREG = $2B4;

 CCODES = $2B1;

 CHKOUT = $FFC9;

 CHROUT = $FFD2;

BEGIN

 MEMC [XREG] := 4;

 CALL (CHROUT);

 MEMC [AREG] := "A";

 CALL (CHROUT);

END .

Warning

The subroutine (if you write one yourself) should not change addresses used by G-Pascal

or unpredictable results will occur. The addresses listed in the table below are used by

the G-Pascal interpreter to maintain important information about the state of a

program as it runs and should not be changed (apart from the 4 addresses used by the

CALL instruction). Other addresses which are not used by the Kernel may be used by

machine-code programs (such as the ones allocated to Basic) however they should be

regarded as ‘scratch’ areas, subject to use by various G-Pascal instructions. (In other

words, they may change from CALL to CALL). For permanent work areas for machine

code programs refer to the section entitled ‘Memory Map’ and choose a suitable area of

memory from that.

G-Pascal

104 | P a g e

Addresses of interest to machine-language programmers:

Address Meaning

$232 A-register save/restore for CALL instruction

$2B3 X-register save/restore for CALL instruction

$2B4 Y-register save/restore for CALL instruction

$ZB] Condition codes save/restore for CALL instruction

$04 Start address of machine code called by CALL

$OB/$OC Address to return to in event of error

$26/$27 Address of next P-code to execute

$28/$29 Address of start of program (first P-code)

$31 Display P-code flag (O = no, 1 = yes) — used in conjunction with debug flag
($67) - to start a trace programmatically move 1 to $31 and $80 to $67. (i.e.
memc [$31] := 1; memc [$67] := $80;)

$45/$46 Current stack frame base

$49 Program running flag (0 = compiling, 12 = running)

$53 Valid compile flag (0 = no,1 = valid)

$54/$55 Address to transfer to if RUN/STOP pressed

$56/$57 First free location past P-codes. (End of program + 1). Can be used for
temporary data or machine code subroutines.

$67 Debugging flag (0 = none, 80 = trace, 1 = debug) (see description for $31
above)

$6C ‘Invalid’ flag (returned by INVALID function)

$6D Collision mask (set up by SPRITEFREEZE)

$65 Collision register (returned by FREEZESTATUS)

$C3/$C4 Current runtime stack top (last used location)

$2C5/$2C6 Address of current P—code

$2138/$2F9 Address of Kemal interrupt routine. G-Pascal's interrupt processor transfers to
here after processing MOVESPRITE and ANIMATESPRITE commands.

$2FA to
$ZFC

Used by interrupt routines

All 2-byte locations which contain an address hold it in the normal 6502 format of low-order

byte first, then high-order byte.

G-Pascal

105 | P a g e

MEANINGS OF P-CODES
Here are what the P-codes mean. You will not normally need this information.

Many P-codes do not have any operands - that is, they are just a single byte. Ln this case their

operands are on the top of the stack, wherever that is at the time. For example, ‘ADD’ adds

together the two top integers on the stack, replacing them with the result of the addition. Some

P-codes (such as Load and Store) are followed by the frame displacement and stack relative

address of the data to be loaded or stored (in other words, the frame-relative address of the

variable). ’]umping' P-codes are followed by a relative address of the location to jump to. WRITE

(string), LOAD and SAVE P-codes are followed by a string length and then the string itself.

Hex P-code Function

00 Load constant

O1 DEFINESPRITE

02 Negate (sp)

03 PLOT

04 Add (sp) to (sp - 1)

O5 PLOT (same as PLOT) (not currently used)

06 Subtract (sp) from (sp - 1)

07 GETKEY

08 Multiply (sp) ‘ (sp — 1)

09 CLEAR

0A Divide (sp - 1) / (sp)

OB MOD (sp - 1) MOD (sp)

0C Address of integer

OD Address of character

OE Address of integer array

OF Address of char array

10 Test (sp - 1) = (sp)

11 Stop run - (end of program)

12 Test (sp - 1) <> (sp)

13 Cursor position

14 Test (sp - 1) < (sp)

15 Not implemented

16 Test (sp - 1) > = (sp)

17 Input hex number

18 Test (sp - 1) > (sp)

19 Test (sp — 1) < = (sp)

1A OR (sp - 1) with (sp)

1B AND (sp - 1) with (sp)

1C Input number

1D Input character

1E Output number

1F Output a character

20 Not (sp) (Reverse true/false)

G-Pascal

106 | P a g e

21 Output hex number

22 Shift left (sp) bits

23 Output string

24 Shift right (sp) bits

25 Input string into array

26 Increment (sp) by 1

27 Relative Procedure/function call

28 Decrement (sp) by 1

29 Procedure/function return

2A Copy (sp) to (sp + 1)

2B Call absolute address

2C Load integer onto stack

2D Load character onto stack

2E Load absolute address integer

2F Load absolute address character

30 Load integer indexed

31 Load character indexed

32 Store integer

33 Store character

34 Store integer absolute

35 Store character absolute

36 Store integer indexed

37 Store character indexed

38 Absolute Procedure/function call

39 WAIT

3A XOR (exclusive or) (sp - 1) with s

3B Increment stack pointer

3C Jump unconditionally

3D jump if (sp) zero

3E lump if (sp) not zero

3F SPRITE

40 POSITIONSPRITE

41 VOICE

42 GRAPHICS

43 SOUND

44 SETCLOCK

45 SCROLL

46 SPRITECOLLIDE

47 GROUNDCOLLIDE

48 CURSORX

49 CURSORY

4A CLOCK

4B PADDLE

4C SPRITEX

G-Pascal

107 | P a g e

4D JOYSTICK

4E SPRITEY

4F RANDOM

50 ENVELOPE

51 SCROLLX

52 SCROLLY

53 SPRITESTATUS

54 MOVESPRITE

55 STOPSPRITE

56 STARTSPRITE

57 ANIMATESPRITE

58 ABS (take absolute value of (sp))

59 INVALID

5A LOAD

5B SAVE

5C SPRITEFREEZE

5D FREEZESTATUS

SE Output a carriage return

80 to FF: Load short literal: P-code — $80 e.g. 80 (hex) means load 0, 81 (hex) means

load 1 etc.

G-Pascal

108 | P a g e

Syntax Diagrams

Program

G-Pascal

109 | P a g e

Simple Expression

G-Pascal

110 | P a g e

Factor

G-Pascal

111 | P a g e

Statement

G-Pascal

112 | P a g e

Appendix

Colour Codes

Commodore 64
Decimal Hex Colour

0 $00 black

1 $01 white

2 $02 red

3 $03 cyan

4 $04 purple

5 $05 green

6 $06 blue

7 $07 yellow

8 $08 orange

9 $09 brown

10 $0A pink

11 $0B dark grey

12 $0C grey

13 $0D light green

14 $0E light blue

15 $0F light grey

C64 and Vice information

US PC keyboard

Action or character PC US Keyboard

Insert blank Shift Backspace

Return Key Enter

Up Arrow Character Shift 6 (Carat)

Left Arrow Character Shift – (Minus)

Stop Run Esc key

G-Pascal

113 | P a g e

Vice Printer setup.

The C64 Mini (and likely THE C64 ?Maxi?).

Files in package.

File Name Description Publish Date

G-Pascal-3.1-c64.d81 G-Pascal system disk in Commodore 1581
format.

December 2019

G-Pascal-C64-Ver02.docx Revised from original user manual in MS
Word format.

December 2019

G-Pascal-C64-Ver02.pdf PDF format of the above users manual December 2019

License.txt Revised license agreement. This was
obtained directly from Nick Gammon.

2011

GPascalUserManual_org.pdf Original GPascal User Manual. Cira 1984

GPascal News1.pdf G-Pascal News Letter Vol 1, No 1 Circa 1984

GPascal News2.pdf G-Pascal News Letter Vol 1, No 2 Circa 1984

GPascal News3.pdf G-Pascal News Letter Vol 2, No 1 January 1985

GPascal News4.pdf G-Pascal News Letter Vol 2, No 2 April 1985

GPascal News5.pdf G-Pascal News Letter Vol 2, No 3 July 1985

GPascal News6.pdf G-Pascal News Letter Vol 2, No 4 October 1985

How to load the G-Pascal program.
1. On your PC copy the file G-Pascal-3.1-c64.d81 file to the USB drive as you would for any

Commodore disk image files. Note that the image type .d81 was selected as it allows 5 times as

space compared to the .d64 image files. This allows the C64 user to not need to attach a work

disk. (Remember to backup your images!).

2. Insert the USB Drive into the C64 and turn it on. Use the joystick to go down and select the USB

icon. Click the fire button. Navigate to the G-Pascal-3.1-c64 disk image and press the fire

button. You will then see the G-Pascal main menu.

G-Pascal

114 | P a g e

