
64tass v1.54 r1900 reference manual
This is the manual for 64tass, the multi pass optimizing macro assembler for the 65xx series
of processors. Key features:

Open source portable C with minimal dependencies
Familiar syntax to Omicron TASS and TASM
Supports 6502, 65C02, R65C02, W65C02, 65CE02, 65816, DTV, 65EL02, 4510
Arbitrary-precision integers and bit strings, double precision floating point numbers
Character and byte strings, array arithmetic
Handles UTF-8, UTF-16 and 8 bit RAW encoded source files, Unicode character strings
Supports Unicode identifiers with compatibility normalization and optional case insen‐
sitivity
Built-in “linker” with section support
Various memory models, binary targets and text output formats (also Hex/S-record)
Assembly and label listings available for debugging or exporting
Conditional compilation, macros, structures, unions, scopes

Contrary how the length of this document suggests 64tass can be used with just basic 6502
assembly knowledge in simple ways like any other assembler. If some advanced functionality
is needed then this document can serve as a reference.

This is a development version. Features or syntax may change as a result of cor‐
rections in non-backwards compatible ways in some rare cases. It's difficult to get
everything “right” first time.

Project page: http://sourceforge.net/projects/tass64/

The page hosts the latest and older versions with sources and a bug and a feature request
tracker.

1 Table of Contents

1 Table of Contents

2 Usage tips

3 Expressions and data types
3.1 Integer constants
3.2 Bit string constants
3.3 Floating point constants
3.4 Character string constants
3.5 Byte string constants
3.6 Lists and tuples
3.7 Dictionaries
3.8 Code
3.9 Addressing modes
3.10 Uninitialized memory
3.11 Booleans
3.12 Types
3.13 Symbols

3.13.1 Regular symbols
3.13.1 Local symbols
3.13.1 Anonymous symbols
3.13.1 Constant and re-definable symbols
3.13.1 The star label

3.14 Built-in functions
3.14.1 Mathematical functions
3.14.1 Other functions

3.15 Expressions

64tass v1.54 r1900 reference manual

1 / 72

3.15.1 Operators
3.15.1 Comparison operators
3.15.1 Bit string extraction operators
3.15.1 Conditional operators
3.15.1 Address length forcing
3.15.1 Compound assignment
3.15.1 Slicing and indexing

4 Compiler directives
4.1 Controlling the compile offset and program counter
4.2 Dumping data

4.2.1 Storing numeric values
4.2.1 Storing string values

4.3 Text encoding
4.4 Structured data

4.4.1 Structure
4.4.1 Union
4.4.1 Combined use of structures and unions

4.5 Macros
4.5.1 Parameter references
4.5.1 Text references

4.6 Custom functions
4.7 Conditional assembly

4.7.1 If, else if, else
4.7.1 Switch, case, default
4.7.1 Comment

4.8 Repetitions
4.9 Including files
4.10 Scopes
4.11 Sections
4.12 65816 related
4.13 Controlling errors
4.14 Target
4.15 Misc
4.16 Printer control

5 Pseudo instructions
5.1 Aliases
5.2 Always taken branches
5.3 Long branches

6 Original turbo assembler compatibility
6.1 How to convert source code for use with 64tass
6.2 Differences to the original turbo ass macro on the C64
6.3 Labels
6.4 Expression evaluation
6.5 Macros
6.6 Bugs

7 Command line options
7.1 Output options
7.2 Operation options
7.3 Diagnostic options
7.4 Target selection on command line
7.5 Symbol listing
7.6 Assembly listing
7.7 Other options
7.8 Command line from file

8 Messages
8.1 Warnings
8.2 Errors

64tass v1.54 r1900 reference manual

2 / 72

8.3 Fatal errors

9 Credits

10 Default translation and escape sequences
10.1 Raw 8-bit source

10.1.1 The none encoding for raw 8-bit
10.1.1 The screen encoding for raw 8-bit

10.2 Unicode and ASCII source
10.2.1 The none encoding for Unicode
10.2.1 The screen encoding for Unicode

11 Opcodes
11.1 Standard 6502 opcodes
11.2 6502 illegal opcodes
11.3 65DTV02 opcodes
11.4 Standard 65C02 opcodes
11.5 R65C02 opcodes
11.6 W65C02 opcodes
11.7 W65816 opcodes
11.8 65EL02 opcodes
11.9 65CE02 opcodes
11.10 CSG 4510 opcodes

12 Appendix
12.1 Assembler directives
12.2 Built-in functions
12.3 Built-in types

2 Usage tips

64tass is a command line assembler, the source can be written in any text editor. As a mini‐
mum the source filename must be given on the command line. The “-a” command line option
is highly recommended if the source is Unicode or ASCII.

64tass -a src.asm

There are also some useful parameters which are described later.

For comfortable compiling I use such “Makefile”s (for make):

demo.prg: source.asm macros.asm pic.drp music.bin
64tass -C -a -B -i source.asm -o demo.tmp
pucrunch -ffast -x 2048 demo.tmp >demo.prg

This way “demo.prg” is recreated by compiling “source.asm” whenever “source.asm”,
“macros.asm”, “pic.drp” or “music.bin” had changed.

Of course it's not much harder to create something similar for win32 (make.bat), however
this will always compile and compress:

64tass.exe -C -a -B -i source.asm -o demo.tmp
pucrunch.exe -ffast -x 2048 demo.tmp >demo.prg

Here's a slightly more advanced Makefile example with default action as testing in VICE,
clean target for removal of temporary files and compressing using an intermediate tempo‐
rary file:

all: demo.prg
x64 -autostartprgmode 1 -autostart-warp +truedrive +cart $<

64tass v1.54 r1900 reference manual

3 / 72

demo.prg: demo.tmp
pucrunch -ffast -x 2048 $< >$@

demo.tmp: source.asm macros.asm pic.drp music.bin
64tass -C -a -B -i $< -o $@

.INTERMEDIATE: demo.tmp

.PHONY: all clean
clean:
 $(RM) demo.prg demo.tmp

It's useful to add a basic header to your source files like the one below, so that the resulting
file is directly runnable without additional compression:

* = $0801
.word (+), 2005 ;pointer, line number
.null $9e, format("%d", start);will be sys 4096

+ .word 0 ;basic line end

* = $1000

start rts

A frequently coming up question is, how to automatically allocate memory, without hacks
like ∗=∗+1? Sure there's .byte and friends for variables with initial values but what about zero
page, or RAM outside of program area? The solution is to not use an initial value by using “?”
or not giving a fill byte value to .fill.

* = $02
p1 .addr ? ;a zero page pointer
temp .fill 10 ;a 10 byte temporary area

Space allocated this way is not saved in the output as there's no data to save at those ad‐
dresses.

What about some code running on zero page for speed? It needs to be relocated, and the
length must be known to copy it there. Here's an example:

ldx #size(zpcode)-1;calculate length
- lda zpcode,x

sta wrbyte,x
dex ;install to zero page
bpl -
jsr wrbyte
rts

;code continues here but is compiled to run from $02
zpcode .logical $02
wrbyte sta $ffff ;quick byte writer at $02

inc wrbyte+1
bne +
inc wrbyte+2

+ rts
.here

The assembler supports lists and tuples, which does not seems interesting at first as it sound
like something which is only useful when heavy scripting is involved. But as normal arith‐
metic operations also apply on all their elements at once, this could spare quite some typing
and repetition.

64tass v1.54 r1900 reference manual

4 / 72

Let's take a simple example of a low/high byte jump table of return addresses, this usually
involves some unnecessary copy/pasting to create a pair of tables with constructs like
>(label−1).

jumpcmd lda hibytes,x ; selected routine in X register
pha
lda lobytes,x ; push address to stack
pha
rts ; jump, rts will increase pc by one!

; Build a list of jump addresses minus 1
_ := (cmd_p, cmd_c, cmd_m, cmd_s, cmd_r, cmd_l, cmd_e)-1
lobytes .byte <_ ; low bytes of jump addresses
hibytes .byte >_ ; high bytes

There are some other tips below in the descriptions.

3 Expressions and data types

3.1 Integer constants

Integer constants can be entered as decimal digits of arbitrary length. An underscore can be
used between digits as a separator for better readability of long numbers. The following op‐
erations are accepted:

Table 1: Integer operators and functions

x + y add x to y 2 + 2 is 4
x − y subtract y from x 4 − 1 is 3
x ∗ y multiply x with y 2 ∗ 3 is 6
x / y integer divide x by y 7 / 2 is 3
x % y integer modulo of x divided by y 5 % 2 is 1
x ∗∗ y x raised to power of y 2 ∗∗ 4 is 16
−x negated value −2 is −2
+x unchanged +2 is 2
~x −x − 1 ~3 is −4
x | y bitwise or 2 | 6 is 6
x ^ y bitwise xor 2 ^ 6 is 4
x & y bitwise and 2 & 6 is 2
x << y logical shift left 1 << 3 is 8
x >> y arithmetic shift right −8 >> 3 is −1

Integers are automatically promoted to float as necessary in expressions. Other types can be
converted to integer using the integer type int.

.byte 23 ; as unsigned

.char -23 ; as signed

; using negative integers as immediate values
ldx #-3 ; works as '#-' is signed immediate

num = -3
ldx #+num ; needs explicit '#+' for signed 8 bits

lda #((bitmap >> 10) & $0f) | ((screen >> 6) & $f0)
sta $d018

3.2 Bit string constants

64tass v1.54 r1900 reference manual

5 / 72

Bit string constants can be entered in hexadecimal form with a leading dollar sign or in bi‐
nary with a leading percent sign. An underscore can be used between digits as a separator
for better readability of long numbers. The following operations are accepted:

Table 2: Bit string operators and functions

~x invert bits ~%101 is ~%101
y .. x concatenate bits $a .. $b is $ab
y x n repeat %101 x 3 is %101101101
x[n] extract bit(s) $a[1] is %1
x[s] slice bits $1234[4:8] is $3
x | y bitwise or ~$2 | $6 is ~$0
x ^ y bitwise xor ~$2 ^ $6 is ~$4
x & y bitwise and ~$2 & $6 is $4
x << y bitwise shift left $0f << 4 is $0f0
x >> y bitwise shift right ~$f4 >> 4 is ~$f

Length of bit string constants are defined in bits and is calculated from the number of bit
digits used including leading zeros.

Bit strings are automatically promoted to integer or floating point as necessary in expres‐
sions. The higher bits are extended with zeros or ones as needed.

Bit strings support indexing and slicing. This is explained in detail in section “Slicing and
indexing”.

Other types can be converted to bit string using the bit string type bits.

.byte $33 ; 8 bits in hexadecimal

.byte %00011111 ; 8 bits in binary

.text $1234 ; $34, $12 (little endian)

lda $01
and #~$07 ; 8 bits even after inversion
ora #$05
sta $01

lda $d015
and #~%00100000 ;clear a bit
sta $d015

3.3 Floating point constants

Floating point constants have a radix point in them and optionally an exponent. A decimal
exponent is “e” while a binary one is “p”. An underscore can be used between digits as a
separator for better readability. The following operations can be used:

Table 3: Floating point operators and functions

x + y add x to y 2.2 + 2.2 is 4.4
x − y subtract y from x 4.1 − 1.1 is 3.0
x ∗ y multiply x with y 1.5 ∗ 3 is 4.5
x / y integer divide x by y 7.0 / 2.0 is 3.5
x % y integer modulo of x divided by y 5.0 % 2.0 is 1.0
x ∗∗ y x raised t power of y 2.0 ∗∗ −1 is 0.5
−x negated value −2.0 is −2.0
+x unchanged +2.0 is 2.0
~x almost −x ~2.1 is almost −2.1
x | y bitwise or 2.5 | 6.5 is 6.5
x ^ y bitwise xor 2.5 ^ 6.5 is 4.0

64tass v1.54 r1900 reference manual

6 / 72

x & y bitwise and 2.5 & 6.5 is 2.5
x << y logical shift left 1.0 << 3.0 is 8.0
x >> y arithmetic shift right −8.0 >> 4 is −0.5

As usual comparing floating point numbers for (non) equality is a bad idea due to rounding
errors.

The only predefined constant is pi.

Floating point numbers are automatically truncated to integer as necessary. Other types
can be converted to floating point by using the type float.

Fixed point conversion can be done by using the shift operators. For example a 8.16 fixed
point number can be calculated as (3.14 << 16) & $ffffff. The binary operators operate like
if the floating point number would be a fixed point one. This is the reason for the strange
definition of inversion.

.byte 3.66e1 ; 36.6, truncated to 36

.byte $1.8p4 ; 4:4 fixed point number (1.5)

.sint 12.2p8 ; 8:8 fixed point number (12.2)

3.4 Character string constants

Character strings are enclosed in single or double quotes and can hold any Unicode charac‐
ter.

Operations like indexing or slicing are always done on the original representation. The
current encoding is only applied when it's used in expressions as numeric constants or in
context of text data directives.

Doubling the quotes inside string literals escapes them and results in a single quote.

Table 4: Character string operators and functions

y .. x concatenate strings "a" .. "b" is "ab"
y in x is substring of "b" in "abc" is true
a x n repeat "ab" x 3 is "ababab"
a[i] character from start "abc"[1] is "b"
a[i] character from end "abc"[−1] is "c"
a[s] no change "abc"[:] is "abc"
a[s] cut off start "abc"[1:] is "bc"
a[s] cut off end "abc"[:−1] is "ab"
a[s] reverse "abc"[::−1] is "cba"

Character strings are converted to integers, byte and bit strings as necessary using the cur‐
rent encoding and escape rules. For example when using a sane encoding "z"−"a" is 25.

Other types can be converted to character strings by using the type str or by using the
repr and format functions.

Character strings support indexing and slicing. This is explained in detail in section “Slic‐
ing and indexing”.

mystr = "oeU" ; character string constant
.text 'it''s' ; it's
.word "ab"+1 ; conversion result is "bb" usually

.text "text"[:2] ; "te"

.text "text"[2:] ; "xt"

.text "text"[:-1] ; "tex"

.text "reverse"[::-1]; "esrever"

64tass v1.54 r1900 reference manual

7 / 72

3.5 Byte string constants

Byte strings are like character strings, but hold bytes instead of characters.

Quoted character strings prefixing by “b”, “l”, “n”, “p”, “s” or “x” characters can be used
to create byte strings. The resulting byte string contains what .text, .shiftl, .null, .ptext and
.shift would create. Direct hexadecimal entry can be done using the “x” prefix which.

Table 5: Byte string operators and functions

y .. x concatenate strings x"12" .. x"34" is x"1234"
y in x is substring of x"34" in x"1234" is true
a x n repeat x"ab" x 3 is x"ababab"
a[i] byte from start x"abcd12"[1] is x"cd"
a[i] byte from end x"abcd"[−1] is x"cd"
a[s] no change x"abcd"[:] is x"abcd"
a[s] cut off start x"abcdef"[1:] is x"cdef"
a[s] cut off end x"abcdef"[:−1] is x"abcd"
a[s] reverse x"abcdef"[::−1] is x"efcdab"

Byte strings support indexing and slicing. This is explained in detail in section “Slicing and
indexing”.

Other types can be converted to byte strings by using the type bytes.

.enc "screen" ;use screen encoding
mystr = b"oeU" ;convert text to bytes, like .text

.enc "none" ;normal encoding

.text mystr ;text as originally encoded

.text s"p1" ;convert to bytes like .shift

.text l"p2" ;convert to bytes like .shiftl

.text n"p3" ;convert to bytes like .null

.text p"p4" ;convert to bytes like .ptext

.text x"fce2" ;2 bytes: $fc and $e2 (big endian)

3.6 Lists and tuples

Lists and tuples can hold a collection of values. Lists are defined from values separated by
comma between square brackets [1, 2, 3], an empty list is []. Tuples are similar but are en‐
closed in parentheses instead. An empty tuple is (), a single element tuple is (4,) to differen‐
tiate from normal numeric expression parentheses. When nested they function similar to an
array. Currently both types are immutable.

Table 6: List and tuple operators and functions

y .. x concatenate lists [1] .. [2] is [1, 2]
y in x is member of list 2 in [1, 2, 3] is true
a x n repeat [1, 2] x 2 is [1, 2, 1, 2]
a[i] element from start ("1", 2)[1] is 2
a[i] element from end ("1", 2, 3)[−1] is 3
a[s] no change (1, 2, 3)[:] is (1, 2, 3)
a[s] cut off start (1, 2, 3)[1:] is (2, 3)
a[s] cut off end (1, 2.0, 3)[:−1] is (1, 2.0)
a[s] reverse (1, 2, 3)[::−1] is (3, 2, 1)
∗a convert to arguments format("%d: %s", ∗mylist)

... op a left fold ... + (1, 2, 3) is ((1+2)+3)
a op ... right fold (1, 2, 3) - ... is (1-(2-3))

64tass v1.54 r1900 reference manual

8 / 72

Arithmetic operations are applied on the all elements recursively, therefore [1, 2] + 1 is [2,
3], and abs([1, −1]) is [1, 1].

Arithmetic operations between lists are applied one by one on their elements, so [1, 2] +
[3, 4] is [4, 6].

When lists form an array and columns/rows are missing the smaller array is stretched to
fill in the gaps if possible, so [[1], [2]] ∗ [3, 4] is [[3, 4], [6, 8]].

Lists and tuples support indexing and slicing. This is explained in detail in section “Slic‐
ing and indexing”.

mylist = [1, 2, "whatever"]
mytuple = (cmd_e, cmd_g)

mylist = ("e", cmd_e, "g", cmd_g, "i", cmd_i)
keys .text mylist[::2] ; keys ("e", "g", "i")
call_l .byte <mylist[1::2]-1; routines (<cmd_e−1, <cmd_g−1, <cmd_i−1)
call_h .byte >mylist[1::2]-1; routines (>cmd_e−1, >cmd_g−1, >cmd_i−1)

Folding is done on pair of elements either forward (left) or reverse (right). The list must con‐
tain at least one element. Here are some folding examples:

minimum = size([part1, part2, part3]) <? ...
maximum = size([part1, part2, part3]) >? ...
sum = size([part1, part2, part3]) + ...
xorall = list_of_numbers ^ ...
join = list_of_strings
allbits = sprites.(left, middle, right).bits | ...
all = [true, true, true, true] && ...
any = [false, false, false, true] || ...

The range(start, end, step) built-in function can be used to create lists of integers in a range
with a given step value. At least the end must be given, the start defaults to 0 and the step to
1. Sounds not very useful, so here are a few examples:

;Bitmask table, 8 bits from left to right
.byte %10000000 >> range(8)

;Classic 256 byte single period sinus table with values of 0−255.
.byte 128 + 127.5 * sin(range(256) * rad(360.0/256))

;Screen row address tables
_ := $400 + range(0, 1000, 40)
scrlo .byte <_
scrhi .byte >_

3.7 Dictionaries

Dictionaries are unsorted lists holding key and value pairs. Definition is done by collecting
key:value pairs separated by comma between braces {1:"value", "key":1, :"optional default
value"}.

Looking up a non existing key is normally an error unless a default value is given. An
empty dictionary is {}. Currently this type is immutable. Numeric and string keys are ac‐
cepted, the value can be anything.

Table 7: Dictionary operators and functions

x[i] value lookup {"1":2}["1"] is 2
y in x is a key 1 in {1:2} is true

; Simple lookup

64tass v1.54 r1900 reference manual

9 / 72

.text {1:"one", 2:"two"}[2]; "two"
; 16 element "fader" table 1->15->12->11->0

.byte {1:15, 15:12, 12:11, :0}[range(16)]

3.8 Code

Code holds the result of compilation in binary and other enclosed objects. In an arithmetic
operation it's used as the numeric address of the memory where it starts. The compiled con‐
tent remains static even if later parts of the source overwrite the same memory area.

Indexing and slicing of code to access the compiled content might be imple‐
mented differently in future releases. Use this feature at your own risk for now, you
might need to update your code later.

Table 8: Label operators and functions

a.b member label.locallabel

a[i] element from start label[1]

a[i] element from end label[−1]

a[s] copy as tuple label[:]

a[s] cut off start, as tuple label[1:]

a[s] cut off end, as tuple label[:−1]

a[s] reverse, as tuple label[::−1]

mydata .word 1, 4, 3
mycode .block
local lda #0

.bend

ldx #size(mydata) ;6 bytes (3∗2)
ldx #len(mydata) ;3 elements
ldx #mycode[0] ;lda instruction, $a9
ldx #mydata[1] ;2nd element, 4
jmp mycode.local ;address of local label

3.9 Addressing modes

Addressing modes are used for determining addressing modes of instructions.

For indexing there must be no white space between the comma and the register letter,
otherwise the indexing operator is not recognized. On the other hand put a space between
the comma and a single letter symbol in a list to avoid it being recognized as an operator.

Table 9: Addressing mode operators

immediate
#+ signed immediate
#− signed immediate
(indirect
[long indirect
,b data bank indexed
,d direct page indexed
,k program bank indexed
,r data stack pointer indexed
,s stack pointer indexed
,x x register indexed
,y y register indexed
,z z register indexed

64tass v1.54 r1900 reference manual

10 / 72

Parentheses are used for indirection and square brackets for long indirection. These opera‐
tions are only available after instructions and functions to not interfere with their normal use
in expressions.

Several addressing mode operators can be combined together. Currently the complex‐
ity is limited to 4 operators. This is enough to describe all addressing modes of the
supported CPUs.

Table 10: Valid addressing mode operator combinations

immediate lda #$12

#+ signed immediate lda #+127

#− signed immediate lda #−128

#addr,#addr move mvp #5,#6

addr direct or relative lda $12 lda $1234 bne $1234

bit,addr direct page bit rmb 5,$12

bit,addr,addr direct page bit relative jump bbs 5,$12,$1234

(addr) indirect lda ($12) jmp ($1234)
(addr),y indirect y indexed lda ($12),y

(addr),z indirect z indexed lda ($12),z

(addr,x) x indexed indirect lda ($12,x) jmp ($1234,x)

[addr] long indirect lda [$12] jmp [$1234]

[addr],y long indirect y indexed lda [$12],y

#addr,b data bank indexed lda #0,b

#addr,b,x data bank x indexed lda #0,b,x

#addr,b,y data bank y indexed lda #0,b,y

#addr,d direct page indexed lda #0,d

#addr,d,x direct page x indexed lda #0,d,x

#addr,d,y direct page y indexed ldx #0,d,y

(#addr,d) direct page indirect lda (#$12,d)

(#addr,d,x) direct page x indexed indirect lda (#$12,d,x)

(#addr,d),y direct page indirect y indexed lda (#$12,d),y

(#addr,d),z direct page indirect z indexed lda (#$12,d),z

[#addr,d] direct page long indirect lda [#$12,d]

[#addr,d],y direct page long indirect y indexed lda [#$12,d],y

#addr,k program bank indexed jsr #0,k

(#addr,k,x) program bank x indexed indirect jmp (#$1234,k,x)

#addr,r data stack indexed lda #1,r

(#addr,r),y data stack indexed indirect y indexed lda (#$12,r),y

#addr,s stack indexed lda #1,s

(#addr,s),y stack indexed indirect y indexed lda (#$12,s),y

addr,x x indexed lda $12,x

addr,y y indexed lda $12,y

Direct page, data bank, program bank indexed and long addressing modes of instructions
are intelligently chosen based on the instruction type, the address ranges set up by .dpage,
.databank and the current program counter address. Therefore the “,d”, “,b” and “,k” index‐
ing is only used in very special cases.

The immediate direct page indexed “#0,d” addressing mode is usable for direct page ac‐
cess. The 8 bit constant is a direct offset from the start of actual direct page.

The immediate data bank indexed “#0,b” addressing mode is usable for data bank access.
The 16 bit constant is a direct offset from the start of actual data bank.

The immediate program bank indexed “#0,k” addressing mode is usable for program bank
jumps, braches and calls. The 16 bit constant is a direct offset from the start of actual pro‐
gram bank.

64tass v1.54 r1900 reference manual

11 / 72

The immediate stack indexed “#0,s” and data stack indexed “#0,r” accept 8 bit constants
as an offset from the start of (data) stack. These are sometimes written without the immedi‐
ate notation, but this makes it more clear what's going on. For the same reason the move in‐
structions are written with an immediate addressing mode “#0,#0” as well.

The immediate (#) addressing mode expects unsigned values of byte or word size. There‐
fore it only accepts constants of 1 byte or in range 0–255 or 2 bytes or in range 0–65535.

The signed immediate (#+ and #−) addressing mode is to allow signed numbers to be used
as immediate constants. It accepts a single byte or an integer in range −128–127, or two
bytes or an integer of −32768–32767.

The use of signed immediate (like #−3) is seamless, but it needs to be explicitly written out
for variables or expressions (#+variable). In case the unsigned variant is needed but the ex‐
pression starts with a negation then it needs to be put into parentheses (#(-variable)) or else
it'll change the address mode to signed.

Normally addressing mode operators are used in expressions right after instructions.
They can also be used for defining stack variable symbols when using a 65816, or to force a
specific addressing mode.

param = #1,s ;define a stack variable
const = #1 ;immediate constant

lda #0,b ;always "absolute" lda $0000
lda param ;results in lda #$01,s
lda param+1 ;results in lda #$02,s
lda (param),y ;results in lda (#$01,s),y
ldx const ;results in ldx #$01
lda #-2 ;negative constant, $fe

3.10 Uninitialized memory

There's a special value for uninitialized memory, it's represented by a question mark. When‐
ever it's used to generate data it creates a “hole” where the previous content of memory is
visible.

Uninitialized memory holes without previous content are not saved unless it's really nec‐
essary for the output format, in that case it's replaced with zeros.

It's not just data generation statements (e.g. .byte) that can create uninitialized memory,
but .fill, .align or address manipulation as well.

* = $200 ;bytes as necessary
.word ? ;2 bytes
.fill 10 ;10 bytes
.align 64 ;bytes as necessary

3.11 Booleans

There are two predefined boolean constant variables, true and false.

Booleans are created by comparison operators (<, <=, !=, ==, >=, >), logical operators (&&, ||,
^^, !), the membership operator (in) and the all and any functions.

Normally in numeric expressions true is 1 and false is 0, unless the “-Wstrict-bool” com‐
mand line option was used.

Other types can be converted to boolean by using the type bool.

Table 11: Boolean values of various types

bits At least one non-zero bit
bool When true

64tass v1.54 r1900 reference manual

12 / 72

bytes At least one non-zero byte
code Address is non-zero
float Not 0.0
int Not zero
str At least one non-zero byte after translation

3.12 Types

The various types mentioned earlier have predefined names. These can used for conversions
or type checks.

Table 12: Built-in type names

address Address type
bits Bit string type
bool Boolean type
bytes Byte string type
code Code type
dict Dictionary type
float Floating point type
gap Uninitialized memory type
int Integer type
list List type
str Character string type
tuple Tuple type
type Type type

.cerror type(var) != str, "Not a string!"

.text str(year) ; convert to string

3.13 Symbols

Symbols are used to reference objects. Regularly named, anonymous and local symbols are
supported. These can be constant or re-definable.

Scopes are where symbols are stored and looked up. The global scope is always defined
and it can contain any number of nested scopes.

Symbols must be uniquely named in a scope, therefore in big programs it's hard to come
up with useful and easy to type names. That's why local and anonymous symbols exists. And
grouping certain related symbols into a scope makes sense sometimes too.

Scopes are usually created by .proc and .block directives, but there are a few other ways.
Symbols in a scope can be accessed by using the dot operator, which is applied between the
name of the scope and the symbol (e.g. myconsts.math.pi).

3.13.1 Regular symbols

Regular symbol names are starting with a letter and containing letters, numbers and under‐
scores. Unicode letters are allowed if the “-a” command line option was used. There's no re‐
striction on the length of symbol names.

Care must be taken to not use duplicate names in the same scope when the symbol is
used as a constant as there can be only one definition for them.

Duplicate names in parent scopes are not a problem and this gives the ability to override
names defined in lower scopes. However this can just as well lead to mistakes if a lower
scoped symbol with the same name was meant so there's a -Wshadow command line option
to warn if such ambiguity exists.

64tass v1.54 r1900 reference manual

13 / 72

Case sensitivity can be enabled with the “-C” command line option, otherwise all symbols
are matched case insensitive.

For case insensitive matching it's possible to check for consistent symbol name use with
the “-Wcase-symbol” command line option.

A regular symbol is looked up first in the current scope, then in lower scopes until the
global scope is reached.

f .block
g .block
n nop ;jump here

.bend
.bend

jsr f.g.n ;reference from a scope
f.x = 3 ;create x in scope f with value 3

3.13.2 Local symbols

Local symbols have their own scope between two regularly named code symbols and are as‐
signed to the code symbol above them.

Therefore they're easy to reuse without explicit scope declaration directives.

Not all regularly named symbols can be scope boundaries just plain code symbol ones
without anything or an opcode after them (no macros!). Symbols defined as procedures,
blocks, macros, functions, structures and unions are ignored. Also symbols defined by .var,
:= or = don't apply, and there are a few more exceptions, so stick to using plain code labels.

The name must start with an underscore (_), otherwise the same character restrictions
apply as for regular symbols. There's no restriction on the length of the name.

Care must be taken to not use the duplicate names in the same scope when the symbol is
used as a constant.

A local symbol is only looked up in it's own scope and nowhere else.

incr inc ac
bne _skip
inc ac+1

_skip rts

decr lda ac
bne _skip
dec ac+1

_skip dec ac ;symbol reused here
jmp incr._skip ;this works too, but is not advised

3.13.3 Anonymous symbols

Anonymous symbols don't have a unique name and are always called as a single plus or mi‐
nus sign. They are also called as forward (+) and backward (−) references.

When referencing them “−” means the first backward, “−−” means the second backwards
and so on. It's the same for forward, but with “+”. In expressions it may be necessary to put
them into brackets.

ldy #4
- ldx #0
- txa

cmp #3

64tass v1.54 r1900 reference manual

14 / 72

bcc +
adc #44

+ sta $400,x
inx
bne -
dey
bne --

Excessive nesting or long distance references create poorly readable code. It's also very easy
to copy-paste a few lines of code with these references into a code fragment already contain‐
ing similar references. The result is usually a long debugging session to find out what went
wrong.

These references are also useful in segments, but this can create a nice trap when seg‐
ments are copied into the code with their internal references.

bne +
#somemakro ;let's hope that this segment does

+ nop ;not contain forward references...

Anonymous symbols are looked up first in the current scope, then in lower scopes until the
global scope is reached.

Anonymous labels within conditionally assembled code are counted even if the code itself
is not compiled and the label won't get defined. This ensures that anonymous labels are al‐
ways at the same "distance" independent of the conditions in between.

3.13.4 Constant and re-definable symbols

Constant symbols can be created with the equal sign. These are not re-definable. Forward
referencing of them is allowed as they retain the objects over compilation passes.

Symbols in front of code or certain assembler directives are created as constant symbols
too. They are bound to the object following them.

Re-definable symbols can be created by the .var directive or := construct. These are also
called as variables. They don't carry their content over from the previous pass therefore it's
not possible to use them before their definition.

Variables can be conditionally defined using the :?= construct. If the variable was defined
already then the original value is retained otherwise a new one is created with this value.

WIDTH = 40 ;a constant
lda #WIDTH ;lda #$28

variabl .var 1 ;a variable
var2 := 1 ;another variable
variabl .var variabl + 1;update it verbosely
var2 += 1 ;compound assignment (add one)
var3 :?= 5 ;assign 5 if undefined

3.13.5 The star label

The “∗” symbol denotes the current program counter value. When accessed it's value is the
program counter at the beginning of the line. Assigning to it changes the program counter
and the compiling offset.

3.14 Built-in functions

Built-in functions are pre-assigned to the symbols listed below. If you reuse these symbols in
a scope for other purposes then they become inaccessible, or can perform a different func‐
tion.

64tass v1.54 r1900 reference manual

15 / 72

Built-in functions can be assigned to symbols (e.g. sinus = sin), and the new name can be
used as the original function. They can even be passed as parameters to functions.

3.14.1 Mathematical functions

floor(<expression>)

Round down. E.g. floor(−4.8) is −5.0

round(<expression>)

Round to nearest away from zero. E.g. round(4.8) is 5.0

ceil(<expression>)

Round up. E.g. ceil(1.1) is 2.0

trunc(<expression>)

Round down towards zero. E.g. trunc(−1.9) is −1

frac(<expression>)

Fractional part. E.g. frac(1.1) is 0.1

sqrt(<expression>)

Square root. E.g. sqrt(16.0) is 4.0

cbrt(<expression>)

Cube root. E.g. cbrt(27.0) is 3.0

log10(<expression>)

Common logarithm. E.g. log10(100.0) is 2.0

log(<expression>)

Natural logarithm. E.g. log(1) is 0.0

exp(<expression>)

Exponential. E.g. exp(0) is 1.0

pow(<expression a>, <expression b>)

A raised to power of B. E.g. pow(2.0, 3.0) is 8.0

sin(<expression>)

Sine. E.g. sin(0.0) is 0.0

asin(<expression>)

Arc sine. E.g. asin(0.0) is 0.0

sinh(<expression>)

Hyperbolic sine. E.g. sinh(0.0) is 0.0

cos(<expression>)

Cosine. E.g. cos(0.0) is 1.0

acos(<expression>)

Arc cosine. E.g. acos(1.0) is 0.0

cosh(<expression>)

Hyperbolic cosine. E.g. cosh(0.0) is 1.0

tan(<expression>)

Tangent. E.g. tan(0.0) is 0.0

atan(<expression>)

Arc tangent. E.g. atan(0.0) is 0.0

tanh(<expression>)

Hyperbolic tangent. E.g. tanh(0.0) is 0.0

rad(<expression>)

Degrees to radian. E.g. rad(0.0) is 0.0

deg(<expression>)

Radian to degrees. E.g. deg(0.0) is 0.0

64tass v1.54 r1900 reference manual

16 / 72

hypot(<expression y>, <expression x>)

Polar distance. E.g. hypot(4.0, 3.0) is 5.0

atan2(<expression y>, <expression x>)

Polar angle in −pi to +pi range. E.g. atan2(0.0, 3.0) is 0.0

abs(<expression>)

Absolute value. E.g. abs(−1) is 1

sign(<expression>)

Returns the sign of value as −1, 0 or 1 for negative, zero and positive. E.g. sign(−5) is
−1

3.14.2 Other functions

all(<expression>)

Return truth for various definitions of “all”.

Table 13: All function

all bits set or no bits at all all($f) is true
all characters non-zero or empty string all("c") is true
all bytes non-zero or no bytes all(x"ac24") is true
all elements true or empty list all([true, true, false]) is false

Only booleans in a list are accepted with the “-Wstrict-bool” command line option.

any(<expression>)

Return truth for various definitions of “any”.

Table 14: Any function

at least one bit set any(~$f) is false
at least one non-zero character any("c") is true
at least one non-zero byte any(x"ac24") is true
at least one true element any([true, true, false]) is true

Only booleans in a list are accepted with the “-Wstrict-bool” command line option.

binary(<string expression>[, <offset>[, <length>]])

Returns the binary file content as bytes.

This function reads the content of a binary file as a byte string. It also accepts optional
offset and length parameters.

Table 15: Binary function invocation types

Read everything binary(name)

Skip starting bytes binary(name, offset)

Some bytes from offset binary(name, offset, length)

sid = "music.sid" ; file name
init = binary(sid, $0a, 2); init address
play = binary(sid, $0c, 2); play address

* = binary(sid, $7c, 2); use loading address
.binary sid, $7e ; load music data

format(<string expression>[, <expression>, …])

Create string from values according to a format string.

The format function converts a list of values into a character string. The converted val‐
ues are inserted in place of the % sign. Optional conversion flags and minimum field
length may follow, before the conversion type character. These flags can be used:

64tass v1.54 r1900 reference manual

17 / 72

Table 16: Formatting flags

alternate form ($a, %10, 10.)
∗ width/precision from list
. precision
0 pad with zeros
− left adjusted (default right)

blank when positive or minus sign
+ sign even if positive

The following conversion types are implemented:

Table 17: Formatting conversion types

a A hexadecimal floating point (uppercase)
b binary
c Unicode character
d decimal
e E exponential float (uppercase)
f F floating point (uppercase)
g G exponential/floating point
s string
r representation
x X hexadecimal (uppercase)
% percent sign

.text format("%#04x bytes left", 1000); $03e8 bytes left

len(<expression>)

Returns the number of elements.

Table 18: Length of various types

bit string length in bits len($034) is 12
character string number of characters len("abc") is 3
byte string number of bytes len(x"abcd23") is 3
tuple, list number of elements len([1, 2, 3]) is 3
dictionary number of elements len({1:2, 3:4]) is 2
code number of elements len(label)

random([<expression>, …])

Returns a pseudo random number.

The sequence does not change across compilations and is the same every time. Differ‐
ent sequences can be generated by seeding with .seed.

Table 19: Random function invocation types

floating point number 0.0 <= x < 1.0 random()

integer in range of 0 <= x < e random(e)

integer in range of s <= x < e random(s, a)

integer in range of s <= x < e, step t random(s, a, t)

.seed 1234 ; default is boring, seed the generator

.byte random(256); a pseudo random byte (0..255)

.byte random([16] x 8); 8 pseudo random bytes (0..15)

range(<expression>[, <expression>, …])

Returns a list of integers in a range, with optional stepping.

64tass v1.54 r1900 reference manual

18 / 72

Table 20: Range function invocation types

integers from 0 to e−1 range(e)

integers from s to e−1 range(s, a)

integers from s to e (not including e), step t range(s, a, t)

.byte range(16) ; 0, 1, ..., 14, 15

.char range(-5, 6); -5, -4, ..., 4, 5
mylist = range(10, 0, -2); [10, 8, 6, 4, 2]

repr(<expression>)

Returns a string representation of value.

.warn repr(var) ; pretty print value, for debugging

size(<expression>)

Returns the size of code, structure or union in bytes.

ldx #size(var) ; size to x

sort(<list>)

Returns a sorted list or tuple.

If the original list contains further lists then these must be all of the same length. In
this case the order of lists is determined by comparing their elements from the start
until a difference is found. The sort is stable.

; sort IRQ routines by their raster lines
sorted = sort([(60, irq1), (50, irq2)])
lines .byte sorted[:, 0] ; 50, 60
irqs .addr sorted[:, 1] ; irq2, irq1

3.15 Expressions

3.15.1 Operators

The following operators are available. Not all are defined for all types of arguments and their
meaning might slightly vary depending on the type.

Table 21: Unary operators

− negative + positive
! not ~ invert
∗ convert to arguments ^ decimal string

The “^” decimal string operator will be changed to mean the bank byte soon. Please
update your sources to use format("%d", xxx) instead! This is done to be in line with it's
use in most other assemblers.

Table 22: Binary operators

+ add − subtract
∗ multiply / divide
% modulo ∗∗ raise to power
| binary or ^ binary xor
& binary and << shift left
>> shift right . member
.. concat x repeat
in contains

64tass v1.54 r1900 reference manual

19 / 72

There's a ternary operator (? :) which gives the second value if the first is true or the third if
the first is false.

Parenthesis (()) can be used to override operator precedence. Don't forget that they also
denote indirect addressing mode for certain opcodes.

lda #(4+2)*3

3.15.2 Comparison operators

Traditional comparison operators give false or true depending on the result.

The compare operator (<=>) gives −1 for less, 0 for equal and 1 for more.

Table 23: Comparison operators

<=> compare
== equals != not equal
< less than >= more than or equals
> more than <= less than or equals

3.15.3 Bit string extraction operators

These unary operators extract 8 or 16 bits as a bit string from various types of operands.

Table 24: Bit string extraction operators

< lower byte > higher byte
<> lower word >` higher word
>< lower byte swapped word ` bank byte

lda #<label
ldy #>label
jsr $ab1e

ldx #<>source ; word extraction
ldy #<>dest
lda #size(source)-1
mvn #`source, #`dest; bank extraction

3.15.4 Conditional operators

Boolean conditional operators give false or true or one of the operands as the result.

Table 25: Logical and conditional operators

x || y if x is true then x otherwise y
x ^^ y if both false or true then false otherwise x || y
x && y if x is true then y otherwise x
!x if x is true then false otherwise true
c ? x : y if c is true then x otherwise y
x <? y if x is smaller then x otherwise y
x >? y if x is greater then x otherwise y

;Silly example for 1=>"simple", 2=>"advanced", else "normal"
.text MODE == 1 && "simple" || MODE == 2 && "advanced" || "normal"
.text MODE == 1 ? "simple" : MODE == 2 ? "advanced" : "normal"

;Limit result to 0 .. 8
light .byte 0 >? range(-16, 101)/6 <? 8

64tass v1.54 r1900 reference manual

20 / 72

Please note that these are not short circuiting operations and both sides are calculated even
if thrown away later.

With the “-Wstrict-bool” command line option booleans are required as arguments and
only the “?” operator may return something else.

3.15.5 Address length forcing

Special addressing length forcing operators in front of an expression can be used to make
sure the expected addressing mode is used. Only applicable when used directly with instruc‐
tions.

Table 26: Address size forcing

@b to force 8 bit address
@w to force 16 bit address
@l to force 24 bit address (65816)

lda @w$0000

3.15.6 Compound assignment

These assignment operators are short hands for common .var directive use.

With the exception of := the variables updated must be defined beforehand. As with .var
they can't update constants, only variables.

Table 27: Compound assignments

+= add −= subtract
∗= multiply /= divide
%= modulo ∗∗= raise to power
|= binary or ^= binary xor
&= binary and ||= logical or
&&= logical and <<= shift left
>>= shift right ..= concat
<?= smaller >?= greater
x= repeat .= member

v += 1 ; same as 'v .var v + 1'

3.15.7 Slicing and indexing

Lists, character strings, byte strings and bit strings support various slicing and indexing pos‐
sibilities through the [] operator.

Indexing elements with positive integers is zero based. Negative indexes are transformed
to positive by adding the number of elements to them, therefore −1 is the last element. In‐
dexing with list of integers is possible as well so [1, 2, 3][(−1, 0, 1)] is [3, 1, 2].

Slicing is an operation when parts of sequence is extracted from a start position to an end
position with a step value. These parameters are separated with colons enclosed in square
brackets and are all optional. Their default values are [start:maximum:step=1]. Negative start
and end characters are converted to positive internally by adding the length of string to
them. Negative step operates in reverse direction, non-single steps will jump over elements.

This is quite powerful and therefore a few examples will be given here:

Positive indexing a[x]
It'll simply extracts a numbered element. It is zero based, therefore "abcd"[1] results in
"b".

64tass v1.54 r1900 reference manual

21 / 72

Negative indexing a[-x]
This extracts an element counted from the end, −1 is the last one. So "abcd"[-2] results
in "c".

Cut off end a[:to]
Extracts a continuous range stopping before “to”. So [10,20,30,40][:-1] results in
[10,20,30].

Cut off start a[from:]
Extracts a continuous range starting from “from”. So [10,20,30,40][-2:] results in
[30,40].

Slicing a[from:to]
Extracts a continuous range starting from element “from” and stopping before “to”.
The two end positions can be positive or negative indexes. So [10,20,30,40][1:−1] re‐
sults in [20,30].

Everything a[:]
Giving no start or end will cover everything and therefore results in a complete copy.

Reverse a[::−1]

This gives everything in reverse, so "abcd"[::−1] is "dcba".

Stepping through a[from:to:step]
Extracts every “step”th element starting from “from” and stopping before “to”. So
"abcdef"[1:4:2] results in "bd". The “from” and “to” can be omitted in case it starts from
the beginning or end at the end. If the “step” is negative then it's done in reverse.

Extract multiple elements a[list]
Extract elements based on a list. So "abcd"[[1,3]] will be "bd".

The fun start with nested lists and tuples, as these can be used to create a matrix. The exam‐
ples will be given for a two dimensional matrix for easier understanding, but this also works
in higher dimensions.

Extract row a[x]
Given a [(1,2),(3,4)] matrix [0] will give the first row which is (1,2)

Extract row range a[from:to]

Given a [(1,2),(3,4),(5,6),(7,8)] matrix [1:3] will give [(3,4),(5,6)]

Extract column a[x]
Given a [(1,2),(3,4)] matrix [:,0] will give the first column of all rows which is [1,3]

Extract column range a[:,from:to]

Given a [(1,2,3,4),(5,6,7,8)] matrix [:,1:3] will give [(2,3),(6,7)]

And it works for list of indexes, negative indexes, stepped ranges, reversing, etc. on all axes
in too many ways to show all possibilities.

Basically it's just the indexing and slicing applied on nested constructs, where each nest‐
ing level is separated by a comma.

4 Compiler directives

4.1 Controlling the compile offset and program counter

Two counters are used while assembling.

The compile offset is where the data and code ends up in memory (or in image file).

The program counter is what labels get set to and what the special star label refers to. It
wraps when the border of a 64 KiB program bank is crossed. The actual program bank is not
incremented, just like on a real processor.

Normally both are the same (code is compiled to the location it runs from) but it does not

64tass v1.54 r1900 reference manual

22 / 72

need to be.

∗= <expression>

The compile offset is adjusted so that the program counter will match the requested
address in the expression.

;Offset PC Bytes Disassembly Source
* = $0800

>0800 .byte
.logical $1000

>0800 1000 .byte
* = $1200

>0a00 1200 .byte
.here

>0a00 .byte

.offs <expression>

Sets the compile offset relative to the program counter.

Popular in old TASM code where this was the only way to create relocated code, other‐
wise it's use is not recommended as there are easier to use alternatives below.

;Offset PC Bytes Disassembly Source
* = $1000

.1000 ea nop nop
.offs 100

.1065 1001 ea nop nop

.logical <expression>

.here

Changes the program counter only, the compile offset is not changed. When finished all
continues where it was left off before.

The naming is not logical at all for relocated code, but that's how it was named in old
6502tass.

It's used for code copied to it's proper location at runtime. Can be nested of course.

;Offset PC Bytes Disassembly Source
* = $1000

.logical $300
.1000 0300 a9 80 lda #$80 drive lda #$80
.1002 0302 85 00 sta $00 sta $00
.1004 0304 4c 00 03 jmp $0300 jmp drive

.here

.virtual [<expression>]

.endv

Changes the program counter to the expression (if given) and discards the result of
compilation.

This is useful to define structures to fixed addresses.

.virtual $d400 ; base address
sid .block
freq .word ? ; frequency
pulsew .word ? ; pulse width
control .byte ? ; control
ad .byte ? ; attack/decay

64tass v1.54 r1900 reference manual

23 / 72

sr .byte ? ; sustain/release
.bend
.endv

Or to define stack "allocated" variables on 65816.

.virtual #1,s
p1 .addr ? ; at #1,s
tmp .byte ? ; at #3,s

.endv
lda (p1),y ; lda ($01,s),y

.align <expression>[, <fill>]

Align the program counter to a dividable address by inserting uninitialized memory or
repeated bytes.

Usually used to page align data or code to avoid penalty cycles when indexing or
branching.

;Offset PC Bytes Disassembly Source
* = $ffc

>0ffc .align $100
.1000 ee 19 d0 inc $d019 irq inc $d019
>1003 ea .align 4, $ea
.1004 69 01 adc #$01 loop adc #1

When alignment is done within named structures then it's relative to the start of the
structure. This means the structure layout will be always the same independent which
address it's instantiated at. Anonymous structures do not change the way the align‐
ment works.

4.2 Dumping data

4.2.1 Storing numeric values

Multi byte numeric data is stored in the little-endian order, which is the natural byte order
for 65xx processors. Numeric ranges are enforced depending on the directives used.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”)
creates holes of different sizes. Character string constants are converted using the current
encoding.

Please note that multi character strings usually don't fit into 8 bits and therefore the .byte
directive is not appropriate for them. Use .text instead which accepts strings of any length.

.byte <expression>[, <expression>, …]

Create bytes from 8 bit unsigned constants (0–255)

.char <expression>[, <expression>, …]

Create bytes from 8 bit signed constants (−128–127)

>1000 ff 03 .byte 255, $03
>1002 41 .byte "a"
>1003 .byte ? ; reserve 1 byte
>1004 fd .char -3
;Store 4.4 signed fixed point constants
>1005 c8 34 32 .char (-3.5, 3.25, 3.125) * 1p4
;Compact computed jumps using self modifying code
.1008 bd 0f 10 lda $1010,x lda jumps,x
.100b 8d 0e 10 sta $100f sta smod+1

64tass v1.54 r1900 reference manual

24 / 72

.100e d0 fe bne $100e smod bne *
;Routines nearby (−128–127 bytes)
>1010 23 49 jumps .char (routine1, routine2)-smod-2

.word <expression>[, <expression>, …]

Create bytes from 16 bit unsigned constants (0–65535)

.sint <expression>[, <expression>, …]

Create bytes from 16 bit signed constants (−32768–32767)

>1000 42 23 55 45 .word $2342, $4555
>1004 .word ? ; reserve 2 bytes
>1006 eb fd 51 11 .sint -533, 4433
;Store 8.8 signed fixed point constants
>100a 80 fc 40 03 20 03 .sint (-3.5, 3.25, 3.125) * 1p8
.1010 bd 19 10 lda $1019,x lda texts,x
.1013 bc 1a 10 ldy $101a,x ldy texts+1,x
.1016 4c 1e ab jmp $ab1e jmp $ab1e
>1019 33 10 59 10 texts .word text1, text2

.addr <expression>[, <expression>, …]

Create 16 bit address constants for addresses (in current program bank)

.rta <expression>[, <expression>, …]

Create 16 bit return address constants for addresses (in current program bank)

 * = $12000
.012000 7c 03 20 jmp ($012003,x) jmp (jumps,x)
>012003 50 20 32 03 92 15 jumps .addr $12050, routine1, routine2
;Computed jumps by using stack (current bank)
 * = $103000
.103000 bf 0c 30 10 lda $10300c,x lda rets+1,x
.103004 48 pha pha
.103005 bf 0b 30 10 lda $10300b,x lda rets,x
.103009 48 pha pha
.10300a 60 rts rts
>10300b ff ef a1 36 f3 42 rets .rta $10f000, routine1, routine2

.long <expression>[, <expression>, …]

Create bytes from 24 bit unsigned constants (0–16777215)

.lint <expression>[, <expression>, …]

Create bytes from 24 bit signed constants (−8388608–8388607)

>1000 56 34 12 .long $123456
>1003 .long ? ; reserve 3 bytes
>1006 eb fd ff 51 11 00 .lint -533, 4433
;Store 8.16 signed fixed point constants
>100c 5d 8f fc 66 66 03 1e 85 .lint (-3.44, 3.4, 3.52) * 1p16
>1014 03
;Computed long jumps with jump table (65816)
.1015 bd 2a 10 lda $102a,x lda jumps,x
.1018 8d 11 03 sta $0311 sta ind
.101b bd 2b 10 lda $102b,x lda jumps+1,x
.101e 8d 12 03 sta $0312 sta ind+1
.1021 bd 2c 10 lda $102c,x lda jumps+2,x
.1024 8d 13 03 sta $0313 sta ind+2
.1027 dc 11 03 jmp [$0311] jmp [ind]
>102a 32 03 01 92 05 02 jumps .long routine1, routine2

64tass v1.54 r1900 reference manual

25 / 72

.dword <expression>[, <expression>, …]

Create bytes from 32 bit constants (0–4294967295)

.dint <expression>[, <expression>, …]

Create bytes from 32 bit signed constants (−2147483648–2147483647)

>1000 78 56 34 12 .dword $12345678
>1004 .dword ? ; reserve 4 bytes
>1008 5d 7a 79 e7 .dint -411469219
;Store 16.16 signed fixed point constants
>100c 5d 8f fc ff 66 66 03 00 .dint (-3.44, 3.4, 3.52) * 1p16
>1014 1e 85 03 00

4.2.2 Storing string values

The following directives store strings of characters, bytes or bits as bytes. Small numeric
constants can be mixed in to represent single byte control characters.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”)
creates byte sized holes. Character string constants are converted using the current encod‐
ing.

.text <expression>[, <expression>, …]

Assemble strings into 8 bit bytes.

>1000 4f 45 d5 .text "oeU"
>1003 4f 45 d5 .text 'oeU'
>1006 17 33 .text 23, $33 ; bytes
>1008 0d 0a .text $0a0d ; $0d, $0a, little endian!
>100a 1f .text %00011111; more bytes

.fill <length>[, <fill>]

Reserve space (using uninitialized data), or fill with repeated bytes.

>1000 .fill $100 ;no fill, just reserve $100 bytes
>1100 00 00 00 .fill $4000, 0 ;16384 bytes of 0
...
>5100 55 aa 55 .fill 8000, [$55, $aa];8000 bytes of alternating $55, $aa
...
>7040 ff ff ff .fill $7100 - *, $ff;fill until $7100 with $ff
...

.shift <expression>[, <expression>, …]

Assemble strings of 7 bit bytes and mark the last byte by setting it's most significant
bit.

Any byte which already has the most significant bit set will cause an error. The last
byte can't be uninitialized or missing of course.

The naming comes from old TASM and is a reference to setting the high bit of al‐
phabetic letters which results in it's uppercase version in PETSCII.

.1000 a2 00 ldx #$00 ldx #0

.1002 bd 10 10 lda $1010,x loop lda txt,x

.1005 08 php php

.1006 29 7f and #$7f and #$7f

.1008 20 d2 ff jsr $ffd2 jsr $ffd2

.100b e8 inx inx

.100c 28 plp plp

.100d 10 f3 bpl $1002 bpl loop

64tass v1.54 r1900 reference manual

26 / 72

.100f 60 rts rts
>1010 53 49 4e 47 4c 45 20 53 txt .shift "single", 32, "string"
>1018 54 52 49 4e c7

.shiftl <expression>[, <expression>, …]

Assemble strings of 7 bit bytes shifted to the left once with the last byte's least signifi‐
cant bit set.

Any byte which already has the most significant bit set will cause an error as this is cut
off on shifting. The last byte can't be uninitialized or missing of course.

The naming is a reference to left shifting.

.1000 a2 00 ldx #$00 ldx #0

.1002 bd 0d 10 lda $100d,x loop lda txt,x

.1005 4a lsr a lsr

.1006 9d 00 04 sta $0400,x sta $400,x ;screen memory

.1009 e8 inx inx

.100a 90 f6 bcc $1002 bcc loop

.100c 60 rts rts
.enc "screen"

>100d a6 92 9c 8e 98 8a 40 a6 .shiftl "single", 32, "string"
>1015 a8 a4 92 9c 8f txt .enc "none"

.null <expression>[, <expression>, …]

Same as .text, but adds a zero byte to the end. An existing zero byte is an error as it'd
cause a false end marker.

.1000 a9 07 lda #$07 lda #<txt

.1002 a0 10 ldy #$10 ldy #>txt

.1004 20 1e ab jsr $ab1e jsr $ab1e
>1007 53 49 4e 47 4c 45 20 53 txt .null "single", 32, "string"
>100f 54 52 49 4e 47 00

.ptext <expression>[, <expression>, …]

Same as .text, but prepend the number of bytes in front of the string (pascal style
string). Therefore it can't do more than 255 bytes.

.1000 a9 1d lda #$1d lda #<txt

.1002 a2 10 ldx #$10 ldx #>txt

.1004 20 08 10 jsr $1008 jsr print

.1007 60 rts rts

.1008 85 fb sta $fb print sta $fb

.100a 86 fc stx $fc stx $fc

.100c a0 00 ldy #$00 ldy #0

.100e b1 fb lda ($fb),y lda ($fb),y

.1010 f0 0a beq $101c beq null

.1012 aa tax tax

.1013 c8 iny - iny

.1014 b1 fb lda ($fb),y lda ($fb),y

.1016 20 d2 ff jsr $ffd2 jsr $ffd2

.1019 ca dex dex

.101a d0 f7 bne $1013 bne -

.101c 60 rts null rts
>101d 0d 53 49 4e 47 4c 45 20 txt .ptext "single", 32, "string"
>1025 53 54 52 49 4e 47

4.3 Text encoding

64tass v1.54 r1900 reference manual

27 / 72

64tass supports sources written in UTF-8, UTF-16 (be/le) and RAW 8 bit encoding. To take
advantage of this capability custom encodings can be defined to map Unicode characters to
8 bit values in strings.

.enc "<name>"

Selects text encoding, predefined encodings are “none” and “screen” (screen code),
anything else is user defined. All user encodings start without any character or escape
definitions, add some as required.

.enc "screen";screen code mode
>1000 13 03 12 05 05 0e 20 03 .text "screen codes"
>1008 0f 04 05 13
.100c c9 15 cmp #$15 cmp #"u" ;compare screen code

.enc "none" ;normal mode again
.100e c9 55 cmp #$55 cmp #"u" ;compare PETSCII

.cdef <start>, <end>, <coded> [, <start>, <end>, <coded>, …]

.cdef "<start><end>", <coded> [, "<start><end>", <coded>, …]

Assigns characters in a range to single bytes.

This is a simple single character to byte translation definition. It is applied to a range
as characters and bytes are usually assigned sequentially. The start and end positions
are Unicode character codes either by numbers or by typing them. Overlapping ranges
are not allowed.

.enc "ascii" ;define an ascii encoding

.cdef " ~", 32 ;identity for printable

.edef "<escapetext>", <value> [, "<escapetext>", <value>, …]

Assigns strings to byte sequences as a translated value.

When these substrings are found in a text they are replaced by bytes defined here.
When strings with common prefixes are used the longest match wins. Useful for defin‐
ing non-typeable control code aliases, or as a simple tokenizer.

.enc "petscii" ;define an ascii->petscii encoding

.cdef " @", 32 ;characters

.cdef "AZ", $c1

.cdef "az", $41

.cdef "[[", $5b

.cdef "££", $5c

.cdef "]]", $5d

.cdef "ππ", $5e

.cdef $2190, $2190, $1f;left arrow

.edef "\n", 13 ;one byte control codes

.edef "{clr}", 147

.edef "{crlf}", [13, 10];two byte control code

.edef "<nothing>", [];replace with no bytes

>1000 93 d4 45 58 54 20 49 4e .text "{clr}Text in PETSCII\n"
>1008 20 d0 c5 d4 d3 c3 c9 c9 0d

4.4 Structured data

Structures and unions can be defined to create complex data types. The offset of fields are
available by using the definition's name. The fields themselves by using the instance name.

The initialization method is very similar to macro parameters, the difference is that unset

64tass v1.54 r1900 reference manual

28 / 72

parameters always return uninitialized data (“?”) instead of an error.

4.4.1 Structure

Structures are for organizing sequential data, so the length of a structure is the sum of
lengths of all items.

.struct [<name>][=<default>]][, [<name>][=<default>] …]

.ends [<result>][, <result> …]

Structure definition, with named parameters and default values

.dstruct <name>[, <initialization values>]

.<name> [<initialization values>]

Create instance of structure with initialization values

.struct ;anonymous structure
x .byte 0 ;labels are visible
y .byte 0 ;content compiled here

.ends ;useful inside unions

nn_s .struct col, row;named structure
x .byte \col ;labels are not visible
y .byte \row ;no content is compiled here

.ends ;it's just a definition

nn .dstruct nn_s, 1, 2;structure instance, content here

lda nn.x ;direct field access
ldy #nn_s.x ;get offset of field
lda nn,y ;and use it indirectly

4.4.2 Union

Unions can be used for overlapping data as the compile offset and program counter remains
the same on each line. Therefore the length of a union is the length of it's longest item.

.union [<name>][=<default>]][, [<name>][=<default>] …]

.endu

Union definition, with named parameters and default values

.dunion <name>[, <initialization values>]

.<name> [<initialization values>]

Create instance of union with initialization values

.union ;anonymous union
x .byte 0 ;labels are visible
y .word 0 ;content compiled here

.endu

nn_u .union ;named union
x .byte ? ;labels are not visible
y .word \1 ;no content is compiled here

.endu ;it's just a definition

nn .dunion nn_u, 1 ;union instance here

lda nn.x ;direct field access
ldy #nn_u.x ;get offset of field
lda nn,y ;and use it indirectly

64tass v1.54 r1900 reference manual

29 / 72

4.4.3 Combined use of structures and unions

The example below shows how to define structure to a binary include.

.union

.binary "pic.drp", 2

.struct
color .fill 1024
screen .fill 1024
bitmap .fill 8000
backg .byte ?

.ends

.endu

Anonymous structures and unions in combination with sections are useful for overlapping
memory assignment. The example below shares zero page allocations for two separate parts
of a bigger program. The common subroutine variables are assigned after in the “zp” sec‐
tion.

* = $02
.union ;spare some memory
.struct
.dsection zp1 ;declare zp1 section
.ends
.struct
.dsection zp2 ;declare zp2 section
.ends
.endu
.dsection zp ;declare zp section

4.5 Macros

Macros can be used to reduce typing of frequently used source lines. Each invocation is a
copy of the macro's content with parameter references replaced by the parameter texts.

.segment [<name>][=<default>]][, [<name>][=<default>] …]

.endm [<result>][, <result> …]

Copies the code segment as it is, so symbols can be used from outside, but this also
means multiple use will result in double defines unless anonymous labels are used.

.macro [<name>][=<default>]][, [<name>][=<default>] …]

.endm [<result>][, <result> …]

The code is enclosed in it's own block so symbols inside are non-accessible, unless a la‐
bel is prefixed at the place of use, then local labels can be accessed through that label.

#<name> [<param>][[,][<param>] …]
.<name> [<param>][[,][<param>] …]

Invoke the macro after “#” or “.” with the parameters. Normally the name of the
macro is used, but it can be any expression.

;A simple macro
copy .macro

ldx #size(\1)
lp lda \1,x

sta \2,x
dex
bpl lp
.endm

64tass v1.54 r1900 reference manual

30 / 72

#copy label, $500

;Use macro as an assembler directive
lohi .macro
lo .byte <(\@)
hi .byte >(\@)

.endm

var .lohi 1234, 5678

lda var.lo,y
ldx var.hi,y

4.5.1 Parameter references

The first 9 parameters can be referenced by “\1”–“\9”. The entire parameter list including
separators is “\@”.

name .macro
lda #\1 ;first parameter 23+1
.endm

#name 23+1 ;call macro

Parameters can be named, and it's possible to set a default value after an equal sign which is
used as a replacement when the parameter is missing.

These named parameters can be referenced by \name or \{name}. Names must match com‐
pletely, if unsure use the quoted name reference syntax.

name .macro first, b=2, , last
lda #\first ;first parameter
lda #\b ;second parameter
lda #\3 ;third parameter
lda #\last ;fourth parameter
.endm

#name 1, , 3, 4 ;call macro

4.5.2 Text references

In the original turbo assembler normal references are passed by value and can only appear
in place of one. Text references on the other hand can appear everywhere and will work in
place of e.g. quoted text or opcodes and labels. The first 9 parameters can be referenced as
text by @1–@9.

name .macro
jsr print
.null "Hello @1!";first parameter
.endm

#name "wth?" ;call macro

4.6 Custom functions

Beyond the built-in functions mentioned earlier it's possible to define custom ones for fre‐
quently used calculations.

64tass v1.54 r1900 reference manual

31 / 72

.function <name>[=<default>]][, <name>[=<default>] …][, ∗<name>]

.endf [<result>][, <result> …]

Defines a user function

#<name> [<param>][[,][<param>] …]
.<name> [<param>][[,][<param>] …]
<name> [<param>][[,][<param>] …]

Invoke a function like a macro, directive or pseudo instruction.

Parameters are assigned to constant symbols in the function scope on invocation. The de‐
fault values are calculated at function definition time only, and these values are used at invo‐
cation time when a parameter is missing.

Extra parameters are not accepted, unless the last parameter symbol is preceded with a
star, in this case these parameters are collected into a tuple. Multiple values are returned
are also returned as tuple.

Functions can span multiple lines but unlike macros they can't create new code. Only
those external variables and functions are available which were accessible at the place of
definition, but not those at the place of invocation.

wpack .function a, b=0
.endf a+b*256

.word wpack(1), wpack(2, 3)

If a function is used as macro, directive or pseudo instruction and there's a label in front
then the returned value is assigned to it. If nothing is returned then it's used as regular la‐
bel. Of course when used like this it can create code and access local variables.

mva .function s, d
lda s
sta d
.endf

mva #1, label

4.7 Conditional assembly

To prevent parts of source from compiling conditional constructs can be used. This is useful
when multiple slightly different versions needs to be compiled from the same source.

Anonymous labels are still recognized in the non-compiling parts even if they won't get
defined. This ensures consistent relative referencing across conditionally compiled areas
with such labels.

4.7.1 If, else if, else

.if <condition>

Compile if condition is true

.elsif <condition>

Compile if previous conditions were not met and the condition is true

.else

Compile if previous conditions were not met

.fi

.endif

End of conditional compilation.

.ifne <value>

Compile if value is not zero

64tass v1.54 r1900 reference manual

32 / 72

.ifeq <value>

Compile if value is zero

.ifpl <value>

Compile if value is greater or equal zero

.ifmi <value>

Compile if value is less than zero

The .ifne, .ifeq, .ifpl and .ifmi directives exists for compatibility only, in practice it's better
to use comparison operators instead.

.if wait==2 ;2 cycles
nop
.elsif wait==3 ;3 cycles
bit $ea
.elsif wait==4 ;4 cycles
bit $eaea
.else ;else 5 cycles
inc $2
.fi

4.7.2 Switch, case, default

Similar to the .if/.elsif/.else/.fi construct, but the compared value needs to be written only
once in the switch statement.

.switch <expression>

Evaluate expression and remember it

.case <expression>[, <expression> …]

Compile if the previous conditions were all skipped and one of the values equals

.default

Compile if the previous conditions were all skipped

.endswitch

End of conditional compilation.

.switch wait

.case 2 ;2 cycles
nop
.case 3 ;3 cycles
bit $ea
.case 4 ;4 cycles
bit $eaea
.default ;else 5 cycles
inc $2
.endswitch

4.7.3 Comment

.comment

Never compile.

.endc

End of conditional compilation.

.comment
 lda #1 ;this won't be compiled

sta $d020

64tass v1.54 r1900 reference manual

33 / 72

.endc

4.8 Repetitions

.for [<assignment>], [<condition>], [<assignment>]

.bfor [<assignment>], [<condition>], [<assignment>]

.next

Assign initial value, loop while the condition is true and modify value.

The .for directive is more useful calculate data as normal labels will be double defined
when used.

The .bfor directive creates a new scope for each iteration therefore it also works
with normal labels but is a bit more resource intensive.

If the .bfor directive was prefixed with a label then individual scopes are accessible
through that label using indexing, otherwise these are not accessible. Variable access
needs dot notation in addition of course.

ldx #0
lda #32

lp .for ue := $400, ue < $800, ue += $100
sta ue,x ;do $400, $500, $600 and $700
.next
dex
bne lp

First a variable is set, usually this is used for counting. This is optional, the variable
may be set already before the loop.

Then the condition is checked and the enclosed lines are compiled if it's true. If
there's no condition then it's an infinite loop and .break must be used to terminate it.

After an iteration the second assignment is calculated, usually it's updating the loop
counter variable. This is optional as well.

.for <variable>[, <variable>, …] in <expression>

.bfor <variable>[, <variable>, …] in <expression>

.next

Assign variable(s) to values in sequence one-by-one in order.

The expression is usually the range function or some sort of list.

.for col in 0, 11, 12, 15, 1
lda #col ;0, 11, 12, 15 and 1
sta $d020
.next

.rept <expression>

.brept <expression>

.next

Repeat enclosed lines the specified number of times.

The .rept directive is useful to repeat data definitions as normal labels will be double
defined when used.

The .brept directive creates a new scope for each repetition therefore it also works
with normal labels but is a bit more resource intensive.

If the .brept directive was prefixed with a label the scopes are accessible through
that label using indexing, otherwise not at all. Variable access needs dot notation in ad‐
dition of course.

64tass v1.54 r1900 reference manual

34 / 72

.rept 100
- inx

bne -
.next

lst .brept 100 ;each iteration into a tuple
label jmp label ;not a duplicate definition

.next
jmp lst[5].label ;use label of 6th iteration

.break

Exit current loop immediately.

Can be used inside .for, .bfor, .rept and .brept to terminate the loop immediately.

.continue

Continue current loop's next iteration.

Can be used inside .for, .bfor, .rept and .brept to start the next iteration immediately.

.next

Closing directive of .for, .bfor, .rept and .brept loop.

.lbl

Creates a special jump label that can be referenced by .goto

.goto <labelname>

Causes assembler to continue assembling from the jump label. No forward references
of course, handle with care. Should only be used in classic TASM sources for creating
loops.

i .var 100
loop .lbl

nop
i .var i - 1

.ifne i

.goto loop ;generates 100 nops

.fi ;the hard way ;)

4.9 Including files

Longer sources are usually separated into multiple files for easier handling. Precomputed bi‐
nary data can also be included directly without converting it into source code first.

Search path is relative to the location of current source file. If it's not found there the in‐
clude search path is consulted for further possible locations.

To make your sources portable please always use forward slashes (/) as a directory sepa‐
rator and use lower/uppercase consistently in file names!

.include <filename>

Include source file here.

.binclude <filename>

Include source file here in it's local block. If the directive is prefixed with a label then
all labels are local and are accessible through that label only, otherwise not reachable
at all.

.include "macros.asm" ;include macros
menu .binclude "menu.asm" ;include in a block

64tass v1.54 r1900 reference manual

35 / 72

jmp menu.start

.binary <filename>[, <offset>[, <length>]]

Include raw binary data from file.

By using offset and length it's possible to break out chunks of data from a file sepa‐
rately, like bitmap and colors for example. Negative offsets are calculated from the end
of file.

.binary "stuffz.bin" ;simple include, all bytes

.binary "stuffz.bin", 2 ;skip start address

.binary "stuffz.bin", 2, 1000;skip start address, 1000 bytes max

4.10 Scopes

Scopes may contain symbols or other scopes nested. They are useful to avoid symbol clashes
as the same symbol name can repeated as long as it's in a different scope.

In nested scopes the symbol lookup starts from the local scope and goes in the direction
of the global scope. This means that local variables will “shadow” global one with the same
name.

.proc

.pend

Procedure start and end of procedure.

If it's label is not used then the code won't be compiled at all. This is very useful to
avoid a lot of .if blocks to exclude unused sections of code.

All labels inside are local enclosed in a scope and are accessible through the pre‐
fixed label. Useful for building libraries.

ize .proc
nop

cucc nop
.pend

jsr ize
jmp ize.cucc

.block

.bend

Block start and block end.

All labels inside a block are local enclosed in a scope. If prefixed with a label local vari‐
ables are accessible through that label using the dot notation, otherwise not at all.

.block
inc count + 1

count ldx #0
.bend

.namespace [<symbol>]

.endn

Namespace area

This directive either creates a new scope (if used without a parameter) or activates the
one in the parameter.

The scope can be assigned to a symbol in front of the directive so that it can be re‐
activated later.

64tass v1.54 r1900 reference manual

36 / 72

This enabled label definitions into the same scope in different files.

.weak

.endweak

Weak symbol area

Any symbols defined inside can be overridden by “stronger” symbols in the same scope
from outside. Can be nested as necessary.

This gives the possibility of giving default values for symbols which might not al‐
ways exist without resorting to .ifdef/.ifndef or similar directives in other assemblers.

symbol = 1 ;stronger symbol than the one below
.weak

symbol = 0 ;default value if the one above does not exists
.endweak
.if symbol ;almost like an .ifdef ;)

Other use of weak symbols might be in included libraries to change default values or
replace stub functions and data structures.

If these stubs are defined using .proc/.pend then their default implementations will
not even exists in the output at all when a stronger symbol overrides them.

Multiple definition of a symbol with the same “strength” in the same scope is of
course not allowed and it results in double definition error.

Please note that .ifdef/.ifndef directives are left out from 64tass for of technical
reasons, so don't wait for them to appear anytime soon.

4.11 Sections

Sections can be used to collect data or code into separate memory areas without moving
source code lines around. This is achieved by having separate compile offset and program
counters for each defined section.

.section <name>

.send [<name>]

Defines a section fragment. The name at .send must match but it's optional.

.dsection <name>

Collect the section fragments here.

All .section fragments are compiled to the memory area allocated by the .dsection directive.
Compilation happens as the code appears, this directive only assigns enough space to hold
all the content in the section fragments.

The space used by section fragments is calculated from the difference of starting compile
offset and the maximum compile offset reached. It is possible to manipulate the compile off‐
set in fragments, but putting code before the start of .dsection is not allowed.

* = $02
.dsection zp ;declare zero page section
.cerror * > $30, "Too many zero page variables"

* = $334
.dsection bss ;declare uninitialized variable section
.cerror * > $400, "Too many variables"

* = $0801
.dsection code ;declare code section
.cerror * > $1000, "Program too long!"

64tass v1.54 r1900 reference manual

37 / 72

* = $1000
.dsection data ;declare data section
.cerror * > $2000, "Data too long!"

;−−−−−−−−−−−−−−−−−−−−
.section code
.word ss, 2005
.null $9e, format("%d", start)

ss .word 0

start sei
.section zp ;declare some new zero page variables

p2 .addr ? ;a pointer
.send zp
.section bss ;new variables

buffer .fill 10 ;temporary area
.send bss

lda (p2),y
lda #<label
ldy #>label
jsr print

.section data ;some data
label .null "message"

.send data

jmp error
.section zp ;declare some more zero page variables

p3 .addr ? ;a pointer
.send zp
.send code

The compiled code will look like:

>0801 0b 08 d5 07 .word ss, 2005
>0805 9e 32 30 36 31 00 .null $9e, format("%d", start)
>080b 00 00 ss .word 0

.080d 78 start sei

>0002 p2 .addr ? ;a pointer
>0334 buffer .fill 10 ;temporary area

.080e b1 02 lda (p2),y

.0810 a9 00 lda #<label

.0812 a0 10 ldy #>label

.0814 20 1e ab jsr print

>1000 6d 65 73 73 61 67 65 00 label .null "message"

.0817 4c e2 fc jmp error

>0004 p2 .addr ? ;a pointer

Sections can form a hierarchy by nesting a .dsection into another section. The section names
must only be unique within a section but can be reused otherwise. Parent section names are
visible for children, siblings can be reached through parents.

64tass v1.54 r1900 reference manual

38 / 72

In the following example the included sources don't have to know which “code” and
“data” sections they use, while the “bss” section is shared for all banks.

;First 8K bank at the beginning, PC at $8000
* = $0000

.logical $8000

.dsection bank1

.cerror * > $a000, "Bank1 too long"

.here

bank1 .block ;Make all symbols local
.section bank1
.dsection code ;Code and data sections in bank1
.dsection data
.section code ;Pre-open code section
.include "code.asm"; see below
.include "iter.asm"
.send code
.send bank1
.bend

;Second 8K bank at $2000, PC at $8000
* = $2000

.logical $8000

.dsection bank2

.cerror * > $a000, "Bank2 too long"

.here

bank2 .block ;Make all symbols local
.section bank2
.dsection code ;Code and data sections in bank2
.dsection data
.section code ;Pre-open code section
.include "scr.asm"
.send code
.send bank2
.bend

;Common data, avoid initialized variables here!
* = $c000

.dsection bss

.cerror * > $d000, "Too much common data"
;−−−−−−−−−−−−− The following is in "code.asm"
code sei

.section bss ;Common data section
buffer .fill 10

.send bss

.section data ;Data section (in bank1)
routine .addr print

.send bss

4.12 65816 related

.as

.al

Select short (8 bit) or long (16 bit) accumulator immediate constants.

64tass v1.54 r1900 reference manual

39 / 72

.al
lda #$4322

.xs

.xl

Select short (8 bit) or long (16 bit) index register immediate constants.

.xl
ldx #$1000

.autsiz

.mansiz

Select automatic adjustment of immediate constant sizes based on SEP/REP instructions.

.autsiz
rep #$10 ;implicit .xl
ldx #$1000

.databank <expression>

Data bank (absolute) addressing is only used for addresses falling into this 64 KiB
bank. The default is 0, which means addresses in bank zero.

When data bank is switched off only data bank indexed (,b) addresses create data bank
accessing instructions.

.databank $10 ;data bank at $10xxxx
lda $101234 ;results in $ad, $34, $12
.databank ? ;no data bank
lda $1234 ;direct page or long addressing
lda #$1234,b ;results in $ad, $34, $12

.dpage <expression>

Direct (zero) page addressing is only used for addresses falling into a specific 256 byte
address range. The default is 0, which is the first page of bank zero.

When direct page is switched off only the direct page indexed (,d) addresses create di‐
rect page accessing instructions.

.dpage $400 ;direct page $400-$4ff
lda $456 ;results in $a5, $56
.dpage ? ;no direct page
lda $56 ;data bank or long addressing
lda #$56,d ;results in $a5, $56

4.13 Controlling errors

.page

.endp

Gives an error on page boundary crossing, e.g. for timing sensitive code.

.page
table .byte 0, 1, 2, 3, 4, 5, 6, 7

.endp

.option allow_branch_across_page

Switches error generation on page boundary crossing during relative branch. Such a
condition on 6502 adds 1 extra cycle to the execution time, which can ruin the timing
of a carefully cycle counted code.

64tass v1.54 r1900 reference manual

40 / 72

.option allow_branch_across_page = 0
ldx #3 ;now this will execute in

- dex ;16 cycles for sure
bne -
.option allow_branch_across_page = 1

.error <message> [, <message>, …]

.cerror <condition>, <message> [, <message>, …]

Exit with error or conditionally exit with error

.error "Unfinished here..."

.cerror * > $1200, "Program too long by ", * - $1200, " bytes"

.warn <message> [, <message>, …]

.cwarn <condition>, <message> [, <message>, …]

Display a warning message always or depending on a condition

.warn "FIXME: handle negative values too!"

.cwarn * > $1200, "This may not work!"

4.14 Target

.cpu <expression>

Selects CPU according to the string argument.

.cpu "6502" ;standard 65xx

.cpu "65c02" ;CMOS 65C02

.cpu "65ce02" ;CSG 65CE02

.cpu "6502i" ;NMOS 65xx

.cpu "65816" ;W65C816

.cpu "65dtv02" ;65dtv02

.cpu "65el02" ;65el02

.cpu "r65c02" ;R65C02

.cpu "w65c02" ;W65C02

.cpu "4510" ;CSG 4510

.cpu "default" ;cpu set on commandline

4.15 Misc

.end

Terminate assembly. Any content after this directive is ignored.

.eor <expression>

XOR output with a 8 bit value. Useful for reverse screen code text for example, or for
silly “encryption”.

.seed <expression>

Seed the pseudo random number generator with an unsigned integer of maximum 128
bits to make the generated numbers less boring.

.var <expression>

Defines a variable identified by the label preceding, which is set to the value of expres‐
sion or reference of variable.

.assert

.check

Do not use these, the syntax will change in next version!

4.16 Printer control

64tass v1.54 r1900 reference manual

41 / 72

.pron

.proff

Turn on or off source listing on part of the file.

.proff ;Don't put filler bytes into listing
* = $8000

.fill $2000, $ff ;Pre-fill ROM area

.pron
* = $8000

.addr reset, restore

.text "CBM80"
reset cld

.hidemac

.showmac

Ignored for compatibility.

5 Pseudo instructions

5.1 Aliases

For better code readability BCC has an alias named BLT (Branch Less Than) and BCS one
named BGE (Branch Greater Equal).

cmp #3
blt exit ; less than 3?

For similar reasons ASL has an alias named SHL (SHift Left) and LSR one named SHR (SHift
Right). This naming however is not very common.

The implied variants LSR, ROR, ASL and ROL are a shorthand for LSR A, ROR A, ASL A and ROL A.
Using the implied form is considered poor coding style.

For compatibility INA and DEA is a shorthand of INC A and DEC A. Therefore there's no “im‐
plied” variants like INC or DEC. The full form with the accumulator is preferred.

The longer forms of INC X, DEC X, INC Y, DEC Y, INC Z and DEC Z are available for INX, DEX, INY,
DEY, INZ and DEZ. For this to work care must be taken to not reuse the “x”, “y” and “z” single
letter register symbols for other purposes. Same goes for “a” of course.

Load instructions with registers are translated to transfer instructions. For example LDA X
becomes TXA.

Store instructions with registers are translated to transfer instructions, but only if it in‐
volves the “s” or “b” registers. For example STX S becomes TXS.

Many illegal opcodes have aliases for compatibility as there's no standard naming conven‐
tion.

5.2 Always taken branches

For writing short code there are some special pseudo instructions for always taken branches.
These are automatically compiled as relative branches when the jump distance is short
enough and as JMP or BRL when longer.

The names are derived from conditional branches and are: GEQ, GNE, GCC, GCS, GPL, GMI, GVC,
GVS, GLT and GGE.

.0000 a9 03 lda #$03 in1 lda #3

.0002 d0 02 bne $0006 gne at ;branch always

.0004 a9 02 lda #$02 in2 lda #2

64tass v1.54 r1900 reference manual

42 / 72

.0006 4c 00 10 jmp $1000 at gne $1000 ;branch further

If the branch would skip only one byte then the opposite condition is compiled and only the
first byte is emitted. This is now a never executed jump, and the relative distance byte after
the opcode is the jumped over byte. If the CPU has long conditional branches (65CE02/4510)
then the same method is applied to two byte skips as well.

There's a pseudo opcode called GRA for CPUs supporting BRA, which is expanded to BRL (if
available) or JMP. A one byte skip will be shortened to a single byte if the CPU has a NOP im‐
mediate instruction (R65C02/W65C02).

If the branch would not skip anything at all then no code is generated.

.0009 geq in3 ;zero length "branch"

.0009 18 clc in3 clc

.000a b0 bcs gcc at2 ;one byte skip, as bcs

.000b 38 sec in4 sec ;sec is skipped!

.000c 20 0f 00 jsr $000f at2 jsr func

.000f func

Please note that expressions like Gxx ∗+2 or Gxx ∗+3 are not allowed as the compiler can't fig‐
ure out if it has to create no code at all, the 1 byte variant or the 2 byte one. Therefore use
normal or anonymous labels defined after the jump instruction when jumping forward!

5.3 Long branches

To avoid branch too long errors the assembler also supports long branches. It can automati‐
cally convert conditional relative branches to it's opposite and a JMP or BRL. This can be en‐
abled on the command line using the “--long-branch” option.

.0000 ea nop nop

.0001 b0 03 bcs $0006 bcc $1000 ;long branch (6502)

.0003 4c 00 10 jmp $1000

.0006 1f 17 03 bbr 1,$17,$000c bbs 1,23,$1000 ;long branch (R65C02)

.0009 4c 00 10 jmp $1000

.000c d0 04 bne $0012 beq $10000 ;long branch (65816)

.000e 5c 00 00 01 jmp $010000

.0012 30 03 bmi $0017 bpl $1000 ;long branch (65816)

.0014 82 e9 lf brl $1000

.0017 ea nop nop

Please note that forward jump expressions like Bxx ∗+130, Bxx ∗+131 and Bxx ∗+132 are not al‐
lowed as the compiler can't decide between a short/long branch. Of course these destina‐
tions can be used, but only with normal or anonymous labels defined after the jump instruc‐
tion.

In the above example extra JMP instructions are emitted for each long branch. This is sub‐
optimal and wasting space if there are several long branches to the same location in close
proximity. Therefore the assembler might decide to reuse a JMP for more than one long
branch to save space.

6 Original turbo assembler compatibility

6.1 How to convert source code for use with 64tass

Currently there are two options, either use “TMPview” by Style to convert the source file di‐
rectly, or do the following:

load turbo assembler, start (by SYS 9∗4096 or SYS 8∗4096 depending on version)

64tass v1.54 r1900 reference manual

43 / 72

← then l to load a source file
← then w to write a source file in PETSCII format
convert the result to ASCII using petcat (from the vice package)

The resulting file should then (with the restrictions below) assemble using the following
command line:

64tass -C -T -a -W -i source.asm -o outfile.prg

6.2 Differences to the original turbo ass macro on the C64

64tass is nearly 100% compatible with the original “Turbo Assembler”, and supports most of
the features of the original “Turbo Assembler Macro”. The remaining notable differences are
listed here.

6.3 Labels

The original turbo assembler uses case sensitive labels, use the “--case-sensitive” command
line option to enable this behaviour.

6.4 Expression evaluation

There are a few differences which can be worked around by the “--tasm-compatible” com‐
mand line option. These are:

The original expression parser has no operator precedence, but 64tass has. That means
that you will have to fix expressions using braces accordingly, for example 1+2∗3 becomes
(1+2)∗3.

The following operators used by the original Turbo Assembler are different:

Table 28: TASM Operator differences

. bitwise or, now |
: bitwise eor, now ^
! force 16 bit address, now @w

The default expression evaluation is not limited to 16 bit unsigned numbers anymore.

6.5 Macros

Macro parameters are referenced by “\1”–“\9” instead of using the pound sign.

Parameters are always copied as text into the macro and not passed by value as the origi‐
nal turbo assembler does, which sometimes may lead to unexpected behaviour. You may
need to make use of braces around arguments and/or references to fix this.

6.6 Bugs

Some versions of the original turbo assembler had bugs that are not reproduced by 64tass,
you will have to fix the code instead.

In some versions labels used in the first .block are globally available. If you get a related
error move the respective label out of the .block.

7 Command line options

Short command line options consist of “-” and a letter, long options start with “--”.

If “--” is encountered then further options are not recognized and are assumed to be file
names.

64tass v1.54 r1900 reference manual

44 / 72

Options requiring file names are marked with “<filename>”. A single “-” as name means
standard input or output. File name quoting is system specific.

7.1 Output options

-o <filename>, --output <filename>

Place output into <filename>. The default output filename is “a.out”. This option
changes it.

64tass a.asm -o a.prg

--output-section <sectionname>

By default all sections go into the output file. Using this option limits the output to spe‐
cific section and it's children. This is useful to split a larger program into several files.

64tass a.asm --output-section main -o main.prg
64tass a.asm --output-section loader -o loader.prg

-X, --long-address

Use 3 byte address/length for CBM and nonlinear output instead of 2 bytes. Also in‐
creases the size of raw output to 16 MiB.

64tass --long-address --m65816 a.asm

--cbm-prg

Generate CBM format binaries (default)

The first 2 bytes are the little endian address of the first valid byte (start address).
Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB or 16 MiB with long address.

Used for C64 binaries.

-b, --nostart

Output raw data without start address.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB or 16 MiB with long address.

Useful for small ROM files.

-f, --flat

Flat address space output mode.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory after the last valid byte is not saved. Up to 4 GiB.

Useful for creating huge multi bank ROM files. See sections for an example.

-n, --nonlinear

Generate nonlinear output file.

Overlapping blocks are flattened. Blocks are saved in sorted order and uninitialized
memory is skipped. Up to 64 KiB or 16 MiB with long address.

Used for linkers and downloading.

64tass --nonlinear a.asm
* = $1000

lda #2

64tass v1.54 r1900 reference manual

45 / 72

* = $2000
nop

Table 29: Result of compilation

$02, $00 little endian length, 2 bytes
$00, $10 little endian start $1000
$a9, $02 code
$01, $00 little endian length, 1 byte
$00, $20 little endian start $2000
$ea code
$00, $00 end marker (length=0)

--atari-xex

Generate a Atari XEX output file.

Overlapping blocks are kept, continuing blocks are concatenated. Saving happens in
the definition order without sorting, and uninitialized memory is skipped in the output.
Up to 64 KiB.

Used for Atari executables.

64tass --atari-xex a.asm
* = $02e0

.addr start ;run address
* = $2000
start rts

Table 30: Result of compilation

$ff, $ff header, 2 bytes
$e0, $02 little endian start $02e0
$e1, $02 little endian last byte $02e1
$00, $20 start address word
$00, $20 little endian start $2000
$00, $20 little endian last byte $2000
$60 code

--apple2

Generate a Apple II output file (DOS 3.3).

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB.

Used for Apple II executables.

64tass --apple-ii a.asm
* = $0c00

rts

Table 31: Result of compilation

$00, $0c little endian start $0c00
$01, $00 little endian length $0001
$60 code

--intel-hex

Use Intel HEX output file format.

Overlapping blocks are kept, data is stored in the definition order, and uninitialized ar‐
eas are skipped. I8HEX up to 64 KiB, I32HEX up to 4 GiB.

64tass v1.54 r1900 reference manual

46 / 72

Used for EPROM programming or downloading.

64tass --intel-hex a.asm
* = $0c00

rts

Result of compilation:

:010C00006093
:00000001FF

--s-record

Use Motorola S-record output file format.

Overlapping blocks are kept, data is stored in the definition order, and uninitialized
memory areas are skipped. S19 up to 64 KiB, S28 up to 16 MiB and S37 up to 4 GiB.

Used for EPROM programming or downloading.

64tass --s-record a.asm
* = $0c00

rts

Result of compilation:

S1040C00608F
S9030C00F0

7.2 Operation options

-a, --ascii

Use ASCII/Unicode text encoding instead of raw 8-bit

Normally no conversion takes place, this is for backwards compatibility with a DOS
based Turbo Assembler editor, which could create PETSCII files for 6502tass. (includ‐
ing control characters of course)

Using this option will change the default “none” and “screen” encodings to map
'a'–'z' and 'A'–'Z' into the correct PETSCII range of $41–$5A and $C1–$DA, which is
more suitable for an ASCII editor. It also adds predefined petcat style PETSCII literals
to the default encodings, and enables Unicode letters in symbol names.

For writing sources in UTF-8/UTF-16 encodings this option is required!

64tass a.asm

.0000 a9 61 lda #$61 lda #"a"

>0002 31 61 41 .text "1aA"
>0005 7b 63 6c 65 61 72 7d 74 .text "{clear}text{return}more"
>000e 65 78 74 7b 72 65 74 75
>0016 72 6e 7d 6d 6f 72 65

64tass --ascii a.asm

.0000 a9 41 lda #$41 lda #"a"
>0002 31 41 c1 .text "1aA"
>0005 93 54 45 58 54 0d 4d 4f .text "{clear}text{return}more"
>000e 52 45

64tass v1.54 r1900 reference manual

47 / 72

-B, --long-branch

Automatic BXX ∗+5 JMP xxx. Branch too long messages are usually solved by manually
rewriting them as BXX ∗+5 JMP xxx. 64tass can do this automatically if this option is
used. BRA is of course not converted.

64tass a.asm
* = $1000

bcc $1233 ;error...

64tass a.asm
* = $1000

bcs *+5 ;opposite condition
jmp $1233 ;as simple workaround

64tass --long-branch a.asm
* = $1000

bcc $1233 ;no error, automatically converted to the above one.

-C, --case-sensitive

Make all symbols (variables, opcodes, directives, operators, etc.) case sensitive. Other‐
wise everything is case insensitive by default.

64tass a.asm
label nop
Label nop ;double defined...

64tass --case-sensitive a.asm
label nop
Label nop ;Ok, it's a different label...

-D <label>=<value>

Command line definition.

Same syntax is allowed as in source files. Be careful with strings, the shell might eat
the quotes unless escaped.

64tass -D ii=2 -D var=\"string\" -D FAST:=true a.asm
lda #ii ;result: $a9, $02

FAST :?= false ;define if undefined

-w, --no-warn

Suppress warnings.

Disables warnings during compile. For fine grained diagnostic message suppression
see the diagnostic options section.

64tass --no-warn a.asm

--no-caret-diag

Suppress displaying of faulty source line and fault position after fault messages.

64tass --no-caret-diag a.asm

-q, --quiet

Suppress messages. Disables header and summary messages.

64tass --quiet a.asm

64tass v1.54 r1900 reference manual

48 / 72

-T, --tasm-compatible

Enable TASM compatible operators and precedence

Switches the expression evaluator into compatibility mode. This enables “.”, “:” and “!”
operators and disables 64tass specific extensions, disables precedence handling and
forces 16 bit unsigned evaluation (see “differences to original Turbo Assembler” be‐
low)

-I <path>

Specify include search path

If an included source or binary file can't be found in the directory of the source file
then this path is tried. More than one directories can be specified by repeating this op‐
tion. If multiple matches exist the first one is used.

-M <file>

Specify make rule output file

Writes a dependency rule suitable for “make” from the list of files used during compila‐
tion.

-E <file>, --error <file>

Specify error output file

Normally compilation errors a written to the standard error output. It's possible to re‐
direct them to a file or to the standard output by using “-” as the file name.

7.3 Diagnostic options

Diagnostic message switched start with a “-W” and can have an optional “no-” prefix to dis‐
able them. The options below with this prefix are enabled by default, the others are disabled.

-Wall

Enable most diagnostic warnings, except those individually disabled. Or with the “no-”
prefix disable all except those enabled.

-Werror

Make all diagnostic warnings to an error, except those individually set to a warning.

-Werror=<name>

Change a diagnostic warning to an error.

For example “-Werror=implied-reg” makes this check an error. The “-Wno-error=” vari‐
ant is useful with “-Werror” to set some to warnings.

-Walias

Warns about alias opcodes.

There are several opcodes for the same task, especially for the "6502i" target.

-Waltmode

Warn about alternative address modes.

Sometimes alternative addressing modes are used as the fitting one is not available.
For example there's no lda direct page y so instead data bank y is used with a warning.

-Wbranch-page

Warns if a branch is crossing a page.

Page crossing branches execute with a penalty cycle. This option helps to locate them
easily.

64tass v1.54 r1900 reference manual

49 / 72

-Wcase-symbol

Warn if symbol letter case is used inconsistently.

This option can be used to enforce letter case matching of symbols in case insensitive
mode. This gives similar results to the case sensitive mode (symbols must match ex‐
actly) with the main difference of disallowing symbol name definitions differing only in
case (these are reported as duplicates).

-Wimmediate

Warns for cases where immediate addressing is more likely.

It may be hard to notice if a “#” was missed. The code still compiles but there's a huge
difference between “cpx #const” and “cpx const”. Unless the right sort of garbage was
on zero page at the time of testing...

This check might have a lot of false positives if zero page locations are accessed by
using small numbers, which is a popular coding style. But there are ways to reduce
them.

For "known" fixed locations address(x) can be used, preferably bound to a symbol.
Automatic allocation of zero page variables works too (e.g. zpstuff .byte ?). And basi‐
cally everything which is a traditional "label" or derived from a label with an offset.

-Wimplied-reg

Warns if implied addressing is used instead of register.

Some instructions have implied aliases like “asl” for “asl a” for compatibility reasons,
but this shorthand is not the preferred form.

-Wleading-zeros

Warns if about leading zeros.

A leading zero could be a prefix for an octal number but as octals are not supported
the result will be decimal.

-Wlong-branch

Warns when a long branch is used.

This option gives a warning for instructions which were modified by the long branch
function. Less intrusive than disabling long branches and see where it fails.

-Wno-deprecated

Don't warn about deprecated features.

Unfortunately there were some features added previously which shouldn't have been
included. This option disables warnings about their uses.

-Wno-float-compare

Don't warn if floating point comparisons are only approximate.

Floating point numbers have a finite precision and comparing them might give unex‐
pected results.

For example 2.1 + 0.2 == 2.3 is true but gives a warning as the left side is actually
bigger by approximately 4.44E-16.

Normally this is solved by rounding or changing the comparison values.

-Wno-ignored

Don't warn about ignored directives.

-Wno-jmp-bug

Don't warn about the jmp ($xxff) bug.

64tass v1.54 r1900 reference manual

50 / 72

With this option it's fine that the high byte is read from the “wrong” address on a 6502,
NMOS 6502 and 65DTV02.

-Wno-label-left

Don't warn about certain labels not being on left side.

You may disable this if you use labels which look like mistyped versions of implied ad‐
dressing mode instructions and you don't want to put them in the first column.

This check is there to catch typos, unsupported implied instructions, or unknown
aliases and not for enforcing label placement.

-Wno-mem-wrap

Don't warn for compile offset wrap around.

Continue from the beginning of image file once it's end was reached.

-Wno-pc-wrap

Don't warn for program counter wrap around.

Continue from the beginning of program bank once it's end was reached.

-Wno-pitfalls

Don't note about common pitfalls.

There are some common mistakes, but experts and those who read this don't need ex‐
tra notes about them. These are:

Use multi character strings with “.byte” instead of “.text”.
This fails because “.byte” enforces the 0–255 range for each value.

Using “label ∗=∗+1” style space reservations.
Warns as “∗=” is also the compound multiply operator. The “∗=∗+1” needs to be on
a separate line without a label. A better alternatively is to use “.fill 1” or “.byte
?”.

Negative numbers with “.byte” or “.word”
There are other directives which accept them with proper range checks like
“.char”, “.sint”.

Negative numbers with “lda #xxx”
There's a signed variant for the immediate addressing so “lda #+xx” will make it
work

-Wno-star-assign

Don't warn about ignored compound multiply.

Normally “symbol ∗= ...” means compound multiply of the variable in front. Unfortu‐
nately this looks the same a “label ∗=∗+x” which is an old-school way to allocate space.

If the symbol was a variable defined earlier then the multiply is performed without
a warning. If it's a new label definition then this warning is used to note that maybe a
variable definition was missed earlier.

If the intention was really a label definition then the “∗=” can be moved to a sepa‐
rate line, or in case of space allocation it could be improved to use “.byte ?” or
“.fill x”.

-Wold-equal

Warn about old equal operator.

The single “=” operator is only there for compatibility reasons and should be written
as “==” normally.

64tass v1.54 r1900 reference manual

51 / 72

-Woptimize

Warn about optimizable code.

Warns on things that could be optimized, at least according to the limited analysis
done. Currently it's easy to fool with these constructs:

Self modifying code, especially modifying immediate addressing mode instruc‐
tions or branch targets
Using .byte $2c and similar tricks to skip instructions.
Using ∗+5 and similar tricks to skip instructions, or to loop like ∗-1.
Any other method of flow control not involving referenced labels. E.g. calculated
returns.
Register re-mappings on 65DTV02 with SIR and SAC.

It's also rather simple and conservative, so some opportunities will be missed. Most
CPUs are supported with the notable exception of 65816 and 65EL02, but this could
improve in later versions.

-Wno-page

Don't do an error for page crossing

Normally the .page directive gives an error on page crossing, this directive can disable
it. Using “-Wno-error=page” can turn it into a warning only.

-Wno-portable

Don't warn about source portability problems.

These cross platform development annoyances are checked for:

Case insensitive use of file names or use of short names.
Use of backslashes for path separation instead of forward slashes.
Use of reserved characters in file names.
Absolute paths

-Wshadow

Warn about symbol shadowing.

Checks if local variables “shadow” other variables of same name in upper scopes in
ambiguous ways.

This is useful to detect hard to notice bugs where a new local variable takes the
place of a global one by mistake.

bl .block
a .byte 2 ;'a' is a built-in register
x .byte 2 ;'x' is a built-in register

asl a ; accumulator or the byte above?
.end
asl bl.x ; not ambiguous

-Wstrict-bool

Warn about implicit boolean conversions.

Boolean values can be interpreted as numeric 0/1 and other types as booleans. This is
convenient but may cause mistakes.

To pass this option the following constructs need improvements:

“1” and “0” as boolean constants. Use the slightly longer “true” and “false”.
Implicit non-zero checks. Write it out like “.if (lbl & 1) != 0”.
Zero checks with “!”. Write it out like “lbl == 0”.
Binary operators on booleans. Use the proper “||”, “&&” and “^^” operators.

64tass v1.54 r1900 reference manual

52 / 72

Numeric expressions like “1 + (lbl > 3)”. It's better as “(lbl > 3) ? 2 : 1”.

-Wswitch-case

Warn about multiple switch case matches

A switch value can match several case conditions but only the first occurance will com‐
pile. A second match might be a mistake.

-Wunused

Warn about unused constant symbols.

Symbols which have no references to them are likely redundant. Before removing them
check if there's any conditionally compiled out code which might still need them.

The following options can be used to be more specific:

-Wunused-macro

Warn about unused macros.

-Wunused-const

Warn about unused constants.

-Wunused-label

Warn about unused labels.

-Wunused-variable

Warn about unused variables.

Symbols which appear in a default 64tass symbol list file and their root symbols are
treated as used for exporting purposes.

7.4 Target selection on command line

These options will select the default architecture. It can be overridden by using the .cpu di‐
rective in the source.

--m65xx

Standard 65xx (default). For writing compatible code, no extra codes. This is the de‐
fault.

64tass --m65xx a.asm
lda $14 ;regular instructions

-c, --m65c02

CMOS 65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --m65c02 a.asm
stz $d020 ;65c02 instruction

--m65ce02

CSG 65CE02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --m65ce02 a.asm
inz

-i, --m6502

NMOS 65xx. Enables extra illegal opcodes. Useful for demo coding for C64, disk drive
code, etc.

64tass --m6502 a.asm
lax $14 ;illegal instruction

64tass v1.54 r1900 reference manual

53 / 72

-t, --m65dtv02

65DTV02. Enables extra opcodes specific to DTV.

64tass --m65dtv02 a.asm
sac #$00

-x, --m65816

W65C816. Enables extra opcodes. Useful for SuperCPU projects.

64tass --m65816 a.asm
lda $123456,x

-e, --m65el02

65EL02. Enables extra opcodes, useful RedPower CPU projects. Probably you'll need “‐
--nostart” as well.

64tass --m65el02 a.asm
lda #0,r

--mr65c02

R65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --mr65c02 a.asm
rmb 7,$20

--mw65c02

W65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --mw65c02 a.asm
wai

--m4510

CSG 4510. Enables extra opcodes and addressing modes specific to this CPU. Useful
for C65 projects.

64tass --m4510 a.asm
map
eom

7.5 Symbol listing

-l <file>, --labels=<file>

List symbols into <file>.

64tass -l labels.txt a.asm
* = $1000
label jmp label

result (labels.txt):
label = $1000

This option may be used multiple times. In this case the format and root scope options
must be placed before using this option.

64tass --vice-labels -l all.l --labels-root=export -l myexport.inc source.asm

This writes symbols for VICE into “all.l” and symbols from scope “export” into “myex‐
port.inc”.

64tass v1.54 r1900 reference manual

54 / 72

--vice-labels

List labels in a VICE readable format.

This format may be used to translate memory locations to something readable in VICE
monitor. Therefore simple numeric constants will not show up unless converted to an
address first.

VICE symbols may only contain ASCII letters, numbers and underscore. Symbols
not meeting this requirement will be omitted.

64tass --vice-labels -l labels.l a.asm
* = $1000
label jmp label

result (labels.l):
al 1000 .label

For now colons are used as scope delimiter due to a VICE limitation, but this
will be changed to dots in the future.

--dump-labels

List labels for debugging.

The output will contain symbol locations and paths.

--labels-root=<path>

Specify the scope to list labels from

This option can be used to limit the output to only a subset of labels. The parameter is
a dot separated path to a scope started from the global scope.

7.6 Assembly listing

-L <file>, --list=<file>

List into <file>. Dumps source code and compiled code into file. Useful for debugging,
it's much easier to identify the code in memory within the source files.

; 64tass Turbo Assembler Macro V1.5x listing file
; 64tass -L list.txt a.asm
; Fri Dec 9 19:08:55 2005

;Offset ;Hex ;Monitor ;Source

;∗∗∗∗∗∗ Processing input file: a.asm

.1000 a2 00 ldx #$00 ldx #0

.1002 ca dex loop dex

.1003 d0 fd bne $1002 bne loop

.1005 60 rts rts

;∗∗∗∗∗∗ End of listing

-m, --no-monitor

Don't put monitor code into listing. There won't be any monitor listing in the list file.

; 64tass Turbo Assembler Macro V1.5x listing file
; 64tass --no-monitor -L list.txt a.asm
; Fri Dec 9 19:11:43 2005

;Offset ;Hex ;Source

64tass v1.54 r1900 reference manual

55 / 72

;∗∗∗∗∗∗ Processing input file: a.asm

.1000 a2 00 ldx #0

.1002 ca loop dex

.1003 d0 fd bne loop

.1005 60 rts

;∗∗∗∗∗∗ End of listing

-s, --no-source

Don't put source code into listing. There won't be any source listing in the list file.

; 64tass Turbo Assembler Macro V1.5x listing file
; 64tass --no-source -L list.txt a.asm
; Fri Dec 9 19:13:25 2005

;Offset ;Hex ;Monitor

;∗∗∗∗∗∗ Processing input file: a.asm

.1000 a2 00 ldx #$00

.1002 ca dex

.1003 d0 fd bne $1002

.1005 60 rts

;∗∗∗∗∗∗ End of listing

--line-numbers

This option creates a new column for showing line numbers for easier identification of
source origin. The line number is followed with an optional colon separated file num‐
ber in case it comes from a different file then the previous lines.

; 64tass Turbo Assembler Macro V1.5x listing file
; 64tass --line-numbers -L list.txt a.asm
; Fri Dec 9 19:13:25 2005

;Line ;Offset ;Hex ;Monitor ;Source

:1 ;∗∗∗∗∗∗ Processing input file: a.asm

3 .1000 a2 00 ldx #$00 ldx #0
4 .1002 ca dex loop dex
5 .1003 d0 fd bne $1002 bne loop
6 .1005 60 rts rts

;∗∗∗∗∗∗ End of listing

--tab-size=<number>

By default the listing file is using a tab size of 8 to align the disassembly. This can be
changed to other more favorable values like 4. Only spaces are used if 1 is selected.
Please note that this has no effect on the source code on the right hand side.

--verbose-list

Normally the assembler tries to minimize listing output by omitting "unimportant"
lines. But sometimes it's better to just list everything including comments and empty
lines.

; 64tass Turbo Assembler Macro V1.5x listing file

64tass v1.54 r1900 reference manual

56 / 72

; 64tass --verbose-list -L list.txt a.asm
; Fri Dec 9 19:13:25 2005

;Offset ;Hex ;Monitor ;Source

;∗∗∗∗∗∗ Processing input file: a.asm

 * = $1000

.1000 a2 00 ldx #$00 ldx #0

.1002 ca dex loop dex

.1003 d0 fd bne $1002 bne loop

.1005 60 rts rts

;∗∗∗∗∗∗ End of listing

7.7 Other options

-?, --help

Give this help list. Prints help about command line options.

--usage

Give a short usage message. Prints short help about command line options.

-V, --version

Print program version

7.8 Command line from file

Command line arguments can be read from a file as well. This is useful to store common op‐
tions for multiple files in one place or to overcome the argument list length limitations of
some systems.

The filename needs to be prefixed with an at sign, so “@argsfile” reads options from
“argsfile”. It will only work if there's not another file named “@argsfile”. The content is ex‐
panded in-place of “@argsfile”.

Stored options must be separated by white space. Single or double quotes can be used in
case file names have white space in their names.

Backslash can be used to escape the character following it and it must be used to escape
itself. Single and double quotes need to be escaped if needed for string quoting.

Forward slashes can be used as a portable path separation on all systems.

8 Messages

Faults and warnings encountered are sent to standard error for logging. To redirect them
into a file append “2>filename.log” after the command, or use the “-E” command line option.
The message format is the following:

<filename>:<line>:<character>: <severity>: <message>

filename: The name and path of source file where the error happened.
line: Line number of file, starts from 1.
character: Character in line, starts from 1. Tabs are not expanded.
severity: Note, warning, error or fatal.
message: The fault message itself.

The faulty line may be displayed after the message with a caret pointing to the error loca‐
tion.

64tass v1.54 r1900 reference manual

57 / 72

a.asm:3:21: error: not defined 'label'
 lda label

^
a.asm:3:21: note: searched in the global scope

Lines containing macros are expanded whenever possible, but due to internal limitations ref‐
erenced lines in relation to the actual fault will display without them.

Messages ending with “[-Wxxx]” are user controllable. This means that using “-Wno-xxx”
on the command line will silence them and “-Werror=xxx” will turn them it into a fault. See
Diagnostic options for more details.

8.1 Warnings

approximate floating point

floating point comparisons are not exact and the numbers were close but maybe not
quite

case ignored, value already handled

this value was already used in an earlier case so here it's ignored

compile offset overflow

compile continues at the bottom ($0000) as end of compile area was reached

constant result, possibly changeable to 'lda'

a pre-calculated value could be loaded instead as the result seems to be always the
same

could be shorter by using 'xxx' instead

this shorter instruction gives the same result according to the optimizer

could be simpler by using 'xxx' instead

this instruction gives the same result but with less dependencies according to the opti‐
mizer

deprecated directive, only for TASM compatible mode

.goto and .lbl should only be used in TASM compatible mode and there are better ways
to loop

deprecated equal operator, use '==' instead

single equal sign for comparisons is going away soon, update source

deprecated modulo operator, use '%' instead

double slash for modulo is going away soon, update source

deprecated not equal operator, use '!=' instead

non-standard not equal operators which will stop working in the future, update source

directive ignored

an assembler directive was ignored for compatibility reasons

expected ? values but got ? to unpack

the number of variables must match the number of values when unpacking

immediate addressing mode suggested

numeric constant was used as an address which was likely meant as an immediate
value

independent result, possibly changeable to 'lda'

the result does not seem to depend on the input so it could be just loaded instead

instruction 'xxx' is an alias of 'xxx'

an alternative instruction name was used

label defined instead of variable multiplication for compatibility

move the '∗=' construct to a separate line or define the variable first as this construct
is ambiguous

64tass v1.54 r1900 reference manual

58 / 72

label not on left side

check if an instruction name was not mistyped and if the current CPU has it, or remove
white space before label

leading zeros ignored

leading zeros in front of decimals are redundant and don't denote an octal number

long branch used

branch distance was too long so long branch was used (bxx ∗+5 jmp)

please use format("%d", ...) as '^' will change it's meaning

this operator will be changed to mean the bank byte later, please update your sources

please use quotes now to allow expressions in future

the directive will allow expressions later and the parameter will be a string

possible jmp ($xxff) bug

some 6502 variants read don't increment the high byte on page cross and this may be
unexpected

possibly redundant as ...

according to the optimizer this might not be needed

possibly redundant if last 'jsr' is changed to 'jmp'

tail call elimination possibility was detected

possibly redundant indexing with a constant value

the index register used seems to be constant and there's a way to eliminate indexing
by a constant offset

processor program counter overflow

pc address was set back to the start of actual 64 KiB program bank as end of bank was
reached

symbol case mismatch '?'

the symbol is matching case insensitively but it's not all letters are exactly the same

the file's real name is not '?'

check if all characters match including their case as this is not the real name of the file

this name uses reserved characters '?'

do not use \ : * ? " < > | in file names as some operating systems don't like these

unused symbol '?'

this symbol has is not referred anywhere and therefore may be unused

use '/' as path separation '?'

backslash is not a path separator on all systems while forward slash will work indepen‐
dent of the host operating system

use relative path for '?'

file's path is absolute and depends on the file system layout and the source will not
compile without the exact same environment

8.2 Errors

'?' expected

something is missing

? argument is missing

not enough arguments supplied

address in different program bank

this instruction is only limited to access the current bank

address not in processor address space

value larger than current CPU address space

address out of section

moving the address around is fine as long as it does not end up before the start of the

64tass v1.54 r1900 reference manual

59 / 72

section

addressing mode too complex

too much indexing or indirection for a valid address

at least one byte is needed

the expression didn't yield any bytes but it's needed here

branch crosses page by ? bytes

page crossing was on branch was detected

branch too far by ? bytes

branches have limited range and this went over by some bytes

can't calculate stable value

somehow it's impossible to calculate this expression

can't calculate this

could not get any value, is this a circular reference?

can't encode character '?' ($xx) in encoding '?'

can't translate character in this encoding as no definition was given

can't get absolute value of

not possible to calculate the absolute value of this type

can't get boolean value of

not possible to determine if this value is true or false

can't get integer value of

this value is not a number

can't get length of

this type has no length

can't get sign of

this type does not have a sign as it's not a number

can't get size of

this type has no size

closing/opening directive '?' not found

couldn't find the other half of block directive pair

conflict

at least one feature is provided, which shouldn't be there

conversion of ? '?' to ? is not possible

this type conversion can't be done

division by zero

dividing with zero can't be done

double defined escape

escape sequence already defined in another .edef differently

double defined range

part of a character range was already defined by another .cdef and these ranges can't
overlap

duplicate definition

symbol defined more than once

empty encoding, add something or correct name

probably a typo in the name of encoding but if not then use .cdef/.edef to define some‐
thing

empty list not allowed

at least one element is required

empty range not allowed

invalid range but there must be at least one element

64tass v1.54 r1900 reference manual

60 / 72

empty string not allowed

at least one character is required

expected exactly/at least/at most ? arguments, got ?

wrong number of function arguments used

expression syntax

syntax error

extra characters on line

there's some garbage on the end of line

floating point overflow

infinity reached during a calculation

general syntax

can't do anything with this

index out of range

not enough elements in list

key error

key not in the dictionary

label required

a label is mandatory for this directive

last byte must not be gap

.shift or .shiftl needs a normal byte at the end

logarithm of non-positive number

only positive numbers have a logarithm

more than a single character

no more than a single character is allowed

more than two characters

no more than two characters are allowed

most significant bit must be clear in byte

for .shift and .shiftl only 7 bit "bytes" are valid

must be within a '.for' or '.rept' loop

.break or .continue must be used within a loop

negative number raised on fractional power

can't calculate this

no ? addressing mode for opcode

this addressing mode is not valid for this instruction

not a bank 0 address

value must be a bank zero address

not a data bank address

value must be a data bank address

not a direct page address

value must be a direct page address

not a key and value pair

dictionaries are built from key and value pairs separated by a colon

not a variable

only variables are changeable

not allowed here: ?

do not use this directive here

not defined '?'

can't find this label at this point

not hashable

64tass v1.54 r1900 reference manual

61 / 72

the type can't be used as a key in a dictionary

not in range -1.0 to 1.0

the function is only valid in the -1.0 to 1.0 range

not iterable

value is not a list or other iterable object

offset out of range

code offset too much

operands could not be broadcast together with shapes ? and ?

list length must match or must have a single element only

different start and end page $xxxx and $xxxx

page crossing was detected

ptext too long by ? bytes

.ptext is limited to 255 bytes maximum

requirements not met

not all features are provided, at least one is missing

reserved symbol name '?'

do not use this symbol name

shadow definition

symbol is defined in an upper scope as well and is used ambiguously

some operation '?' of type '?' and type '?' not possible

can't do this calculation with these values

square root of negative number

can't calculate the square root of a negative number

too early to reference

processing still ongoing, can't access this yet

too large for a ? bit signed/unsigned integer

value out of range

unknown processor '?'

unknown cpu name

unknown argument name '?'

no parameter argument known like this

value needs to be non-negative

only positive numbers or zero is accepted here

wrong type <?>

wrong object type used

zero value not allowed

do not use zero for example with .null

8.3 Fatal errors

can't open file

cannot open file

can't write error file

cannot write the error file

can't write label file

cannot write the label file

can't write listing file

cannot write the list file

can't write make file

64tass v1.54 r1900 reference manual

62 / 72

cannot write the make rule file

can't write object file

cannot write the result

error reading file

error while reading

file recursion

wrong nesting of .include

function recursion too deep

wrong use of nested functions

macro recursion too deep

wrong use of nested macros

option '?' doesn't allow an argument

command line option doesn't need any argument

option '?' is ambiguous

command line option abbreviation is too short

option '?' not recognized

no such command line option

option '?' requires an argument

command line option needs an argument

out of memory

won't happen ;)

scope '?' for label listing not found

the scope given on command line couldn't be found

section '?' for output not found

the section given on command line couldn't be found

too many passes

with a carefully crafted source file it's possible to create unresolvable situations but try
to avoid this

unknown option '?'

option not known

weak recursion

excessive nesting of .weak

9 Credits

Original 6502tass written for DOS by Marek Matula of Taboo.

It was ported to ANSI C by BigFoot/Breeze. This is when it's name changed to 64tass.

Soci/Singular reworked the code over the years to the point that practically nothing was
left from original at this point.

Improved TASS compatibility, PETSCII codes by Groepaz.

Additional code: my_getopt command-line argument parser by Benjamin Sittler, avl tree
code by Franck Bui-Huu, ternary tree code by Daniel Berlin, snprintf Alain Magloire, Amiga
OS4 support files by Janne Peräaho.

Pierre Zero helped to uncover a lot of faults by fuzzing. Also there were a lot of discus‐
sions with oziphantom about the need of various features.

Main developer and maintainer: soci at c64.rulez.org

10 Default translation and escape sequences

64tass v1.54 r1900 reference manual

63 / 72

10.1 Raw 8-bit source

By default raw 8-bit encoding is used and nothing is translated or escaped. This mode is for
compiling sources which are already PETSCII.

10.1.1 The “none” encoding for raw 8-bit

Does no translation at all, no translation table, no escape sequences.

10.1.2 The “screen” encoding for raw 8-bit

The following translation table applies, no escape sequences.

Table 32: Built-in PETSCII to PETSCII screen code translation table

Input Byte Input Byte
00–1F 80–9F 20–3F 20–3F
40–5F 00–1F 60–7F 40–5F
80–9F 80–9F A0–BF 60–7F
C0–FE 40–7E FF 5E

10.2 Unicode and ASCII source

Unicode encoding is used when the “-a” option is given on the command line.

10.2.1 The “none” encoding for Unicode

This is a Unicode to PETSCII mapping, including escape sequences for control codes.

Table 33: Built-in Unicode to PETSCII translation table

Glyph Unicode Byte Glyph Unicode Byte
 –@ U+0020–U+0040 20–40 A–Z U+0041–U+005A C1–DA

[U+005B 5B] U+005D 5D

a–z U+0061–U+007A 41–5A £ U+00A3 5C

π U+03C0 FF ← U+2190 5F

↑ U+2191 5E ─ U+2500 C0

│ U+2502 DD ┌ U+250C B0

┐ U+2510 AE └ U+2514 AD

┘ U+2518 BD ├ U+251C AB

┤ U+2524 B3 ┬ U+252C B2

┴ U+2534 B1 ┼ U+253C DB

╭ U+256D D5 ╮ U+256E C9

╯ U+256F CB ╰ U+2570 CA

╱ U+2571 CE ╲ U+2572 CD

╳ U+2573 D6 ▁ U+2581 A4

▂ U+2582 AF ▃ U+2583 B9

▄ U+2584 A2 ▌ U+258C A1

▍ U+258D B5 ▎ U+258E B4

▏ U+258F A5 ▒ U+2592 A6

▔ U+2594 A3 ▕ U+2595 A7

▖ U+2596 BB ▗ U+2597 AC

▘ U+2598 BE ▚ U+259A BF

▝ U+259D BC ○ U+25CB D7

● U+25CF D1 ◤ U+25E4 A9

◥ U+25E5 DF ♠ U+2660 C1

♣ U+2663 D8 ♥ U+2665 D3

♦ U+2666 DA ✓ U+2713 BA

64tass v1.54 r1900 reference manual

64 / 72

Glyph Unicode Byte Glyph Unicode Byte
🭰 U+1FB70 D4 🭱 U+1FB71 C7

🭲 U+1FB72 C2 🭳 U+1FB73 DD

🭴 U+1FB74 C8 🭵 U+1FB75 D9

🭶 U+1FB76 C5 🭷 U+1FB77 C4

🭸 U+1FB78 C3 🭹 U+1FB79 C0

🭺 U+1FB7A C6 🭻 U+1FB7B D2

🭼 U+1FB7C CC 🭽 U+1FB7D CF

🭾 U+1FB7E D0 🭿 U+1FB7F BA

🮂 U+1FB82 B7 🮃 U+1FB83 B8

🮇 U+1FB87 AA 🮈 U+1FB88 B6

🮌 U+1FB8C DC 🮏 U+1FB8F A8

🮕 U+1FB95 FF 🮘 U+1FB98 DF

🮙 U+1FB99 A9

Table 34: Built-in PETSCII escape sequences

Escape Byte Escape Byte Escape Byte
{bell} 07 {black} 90 {blk} 90

{blue} 1F {blu} 1F {brn} 95

{brown} 95 {cbm-*} DF {cbm-+} A6

{cbm--} DC {cbm-0} 30 {cbm-1} 81

{cbm-2} 95 {cbm-3} 96 {cbm-4} 97

{cbm-5} 98 {cbm-6} 99 {cbm-7} 9A

{cbm-8} 9B {cbm-9} 29 {cbm-@} A4

{cbm-^} DE {cbm-a} B0 {cbm-b} BF

{cbm-c} BC {cbm-d} AC {cbm-e} B1

{cbm-f} BB {cbm-g} A5 {cbm-h} B4

{cbm-i} A2 {cbm-j} B5 {cbm-k} A1

{cbm-l} B6 {cbm-m} A7 {cbm-n} AA

{cbm-o} B9 {cbm-pound} A8 {cbm-p} AF

{cbm-q} AB {cbm-r} B2 {cbm-s} AE

{cbm-t} A3 {cbm-up arrow} DE {cbm-u} B8

{cbm-v} BE {cbm-w} B3 {cbm-x} BD

{cbm-y} B7 {cbm-z} AD {clear} 93

{clr} 93 {control-0} 92 {control-1} 90

{control-2} 05 {control-3} 1C {control-4} 9F

{control-5} 9C {control-6} 1E {control-7} 1F

{control-8} 9E {control-9} 12 {control-:} 1B

{control-;} 1D {control-=} 1F {control-@} 00

{control-a} 01 {control-b} 02 {control-c} 03

{control-d} 04 {control-e} 05 {control-f} 06

{control-g} 07 {control-h} 08 {control-i} 09

{control-j} 0A {control-k} 0B {control-left arrow} 06

{control-l} 0C {control-m} 0D {control-n} 0E

{control-o} 0F {control-pound} 1C {control-p} 10

{control-q} 11 {control-r} 12 {control-s} 13

{control-t} 14 {control-up arrow} 1E {control-u} 15

{control-v} 16 {control-w} 17 {control-x} 18

{control-y} 19 {control-z} 1A {cr} 0D

{cyan} 9F {cyn} 9F {delete} 14

{del} 14 {dish} 08 {down} 11

{ensh} 09 {esc} 1B {f10} 82

{f11} 84 {f12} 8F {f1} 85

{f2} 89 {f3} 86 {f4} 8A

{f5} 87 {f6} 8B {f7} 88

64tass v1.54 r1900 reference manual

65 / 72

Escape Byte Escape Byte Escape Byte
{f8} 8C {f9} 80 {gray1} 97

{gray2} 98 {gray3} 9B {green} 1E

{grey1} 97 {grey2} 98 {grey3} 9B

{grn} 1E {gry1} 97 {gry2} 98

{gry3} 9B {help} 84 {home} 13

{insert} 94 {inst} 94 {lblu} 9A

{left arrow} 5F {left} 9D {lf} 0A

{lgrn} 99 {lower case} 0E {lred} 96

{lt blue} 9A {lt green} 99 {lt red} 96

{orange} 81 {orng} 81 {pi} FF

{pound} 5C {purple} 9C {pur} 9C

{red} 1C {return} 0D {reverse off} 92

{reverse on} 12 {rght} 1D {right} 1D

{run} 83 {rvof} 92 {rvon} 12

{rvs off} 92 {rvs on} 12 {shift return} 8D

{shift-*} C0 {shift-+} DB {shift-,} 3C

{shift--} DD {shift-.} 3E {shift-/} 3F

{shift-0} 30 {shift-1} 21 {shift-2} 22

{shift-3} 23 {shift-4} 24 {shift-5} 25

{shift-6} 26 {shift-7} 27 {shift-8} 28

{shift-9} 29 {shift-:} 5B {shift-;} 5D

{shift-@} BA {shift-^} DE {shift-a} C1

{shift-b} C2 {shift-c} C3 {shift-d} C4

{shift-e} C5 {shift-f} C6 {shift-g} C7

{shift-h} C8 {shift-i} C9 {shift-j} CA

{shift-k} CB {shift-l} CC {shift-m} CD

{shift-n} CE {shift-o} CF {shift-pound} A9

{shift-p} D0 {shift-q} D1 {shift-r} D2

{shift-space} A0 {shift-s} D3 {shift-t} D4

{shift-up arrow} DE {shift-u} D5 {shift-v} D6

{shift-w} D7 {shift-x} D8 {shift-y} D9

{shift-z} DA {space} 20 {sret} 8D

{stop} 03 {swlc} 0E {swuc} 8E

{tab} 09 {up arrow} 5E {up/lo lock off} 09

{up/lo lock on} 08 {upper case} 8E {up} 91

{white} 05 {wht} 05 {yellow} 9E

{yel} 9E

10.2.2 The “screen” encoding for Unicode

This is a Unicode to PETSCII screen code mapping, including escape sequences for control
code screen codes.

Table 35: Built-in Unicode to PETSCII screen code translation table

Glyph Unicode Translated Glyph Unicode Translated
 –? U+0020–U+003F 20–3F @ U+0040 00

A–Z U+0041–U+005A 41–5A [U+005B 1B

] U+005D 1D a–z U+0061–U+007A 01–1A

£ U+00A3 1C π U+03C0 5E

← U+2190 1F ↑ U+2191 1E

─ U+2500 40 │ U+2502 5D

┌ U+250C 70 ┐ U+2510 6E

└ U+2514 6D ┘ U+2518 7D

├ U+251C 6B ┤ U+2524 73

64tass v1.54 r1900 reference manual

66 / 72

Glyph Unicode Translated Glyph Unicode Translated
┬ U+252C 72 ┴ U+2534 71

┼ U+253C 5B ╭ U+256D 55

╮ U+256E 49 ╯ U+256F 4B

╰ U+2570 4A ╱ U+2571 4E

╲ U+2572 4D ╳ U+2573 56

▁ U+2581 64 ▂ U+2582 6F

▃ U+2583 79 ▄ U+2584 62

▌ U+258C 61 ▍ U+258D 75

▎ U+258E 74 ▏ U+258F 65

▒ U+2592 66 ▔ U+2594 63

▕ U+2595 67 ▖ U+2596 7B

▗ U+2597 6C ▘ U+2598 7E

▚ U+259A 7F ▝ U+259D 7C

○ U+25CB 57 ● U+25CF 51

◤ U+25E4 69 ◥ U+25E5 5F

♠ U+2660 41 ♣ U+2663 58

♥ U+2665 53 ♦ U+2666 5A

✓ U+2713 7A 🭰 U+1FB70 54

🭱 U+1FB71 47 🭲 U+1FB72 42

🭳 U+1FB73 5D 🭴 U+1FB74 48

🭵 U+1FB75 59 🭶 U+1FB76 45

🭷 U+1FB77 44 🭸 U+1FB78 43

🭹 U+1FB79 40 🭺 U+1FB7A 46

🭻 U+1FB7B 52 🭼 U+1FB7C 4C

🭽 U+1FB7D 4F 🭾 U+1FB7E 50

🭿 U+1FB7F 7A 🮂 U+1FB82 77

🮃 U+1FB83 78 🮇 U+1FB87 6A

🮈 U+1FB88 76 🮌 U+1FB8C 5C

🮏 U+1FB8F 68 🮕 U+1FB95 5E

🮘 U+1FB98 5F 🮙 U+1FB99 69

Table 36: Built-in PETSCII screen code escape sequences

Escape Byte Escape Byte Escape Byte
{cbm-*} 5F {cbm-+} 66 {cbm--} 5C

{cbm-0} 30 {cbm-9} 29 {cbm-@} 64

{cbm-^} 5E {cbm-a} 70 {cbm-b} 7F

{cbm-c} 7C {cbm-d} 6C {cbm-e} 71

{cbm-f} 7B {cbm-g} 65 {cbm-h} 74

{cbm-i} 62 {cbm-j} 75 {cbm-k} 61

{cbm-l} 76 {cbm-m} 67 {cbm-n} 6A

{cbm-o} 79 {cbm-pound} 68 {cbm-p} 6F

{cbm-q} 6B {cbm-r} 72 {cbm-s} 6E

{cbm-t} 63 {cbm-up arrow} 5E {cbm-u} 78

{cbm-v} 7E {cbm-w} 73 {cbm-x} 7D

{cbm-y} 77 {cbm-z} 6D {left arrow} 1F

{pi} 5E {pound} 1C {shift-*} 40

{shift-+} 5B {shift-,} 3C {shift--} 5D

{shift-.} 3E {shift-/} 3F {shift-0} 30

{shift-1} 21 {shift-2} 22 {shift-3} 23

{shift-4} 24 {shift-5} 25 {shift-6} 26

{shift-7} 27 {shift-8} 28 {shift-9} 29

{shift-:} 1B {shift-;} 1D {shift-@} 7A

{shift-^} 5E {shift-a} 41 {shift-b} 42

{shift-c} 43 {shift-d} 44 {shift-e} 45

64tass v1.54 r1900 reference manual

67 / 72

Escape Byte Escape Byte Escape Byte
{shift-f} 46 {shift-g} 47 {shift-h} 48

{shift-i} 49 {shift-j} 4A {shift-k} 4B

{shift-l} 4C {shift-m} 4D {shift-n} 4E

{shift-o} 4F {shift-pound} 69 {shift-p} 50

{shift-q} 51 {shift-r} 52 {shift-space} 60

{shift-s} 53 {shift-t} 54 {shift-up arrow} 5E

{shift-u} 55 {shift-v} 56 {shift-w} 57

{shift-x} 58 {shift-y} 59 {shift-z} 5A

{space} 20 {up arrow} 1E

11 Opcodes

11.1 Standard 6502 opcodes

Table 37: The standard 6502 opcodes

ADC 61 65 69 6D 71 75 79 7D AND 21 25 29 2D 31 35 39 3D

ASL 06 0A 0E 16 1E BCC 90

BCS B0 BEQ F0

BIT 24 2C BMI 30

BNE D0 BPL 10

BRK 00 BVC 50

BVS 70 CLC 18

CLD D8 CLI 58

CLV B8 CMP C1 C5 C9 CD D1 D5 D9 DD

CPX E0 E4 EC CPY C0 C4 CC

DEC C6 CE D6 DE DEX CA

DEY 88 EOR 41 45 49 4D 51 55 59 5D

INC E6 EE F6 FE INX E8

INY C8 JMP 4C 6C

JSR 20 LDA A1 A5 A9 AD B1 B5 B9 BD

LDX A2 A6 AE B6 BE LDY A0 A4 AC B4 BC

LSR 46 4A 4E 56 5E NOP EA

ORA 01 05 09 0D 11 15 19 1D PHA 48

PHP 08 PLA 68

PLP 28 ROL 26 2A 2E 36 3E

ROR 66 6A 6E 76 7E RTI 40

RTS 60 SBC E1 E5 E9 ED F1 F5 F9 FD

SEC 38 SED F8

SEI 78 STA 81 85 8D 91 95 99 9D

STX 86 8E 96 STY 84 8C 94

TAX AA TAY A8

TSX BA TXA 8A

TXS 9A TYA 98

Table 38: Aliases, pseudo instructions

ASL 0A BGE B0

BLT 90 GCC 4C 90

GCS 4C B0 GEQ 4C F0

GGE 4C B0 GLT 4C 90

GMI 30 4C GNE 4C D0

GPL 10 4C GVC 4C 50

GVS 4C 70 LSR 4A

ROL 2A ROR 6A

SHL 06 0A 0E 16 1E SHR 46 4A 4E 56 5E

64tass v1.54 r1900 reference manual

68 / 72

11.2 6502 illegal opcodes

This processor is a standard 6502 with the NMOS illegal opcodes.

Table 39: Additional opcodes

ANC 0B ANE 8B

ARR 6B ASR 4B

DCP C3 C7 CF D3 D7 DB DF ISB E3 E7 EF F3 F7 FB FF

JAM 02 LAX A3 A7 AB AF B3 B7 BF

LDS BB NOP 04 0C 14 1C 80

RLA 23 27 2F 33 37 3B 3F RRA 63 67 6F 73 77 7B 7F

SAX 83 87 8F 97 SBX CB

SHA 93 9F SHS 9B

SHX 9E SHY 9C

SLO 03 07 0F 13 17 1B 1F SRE 43 47 4F 53 57 5B 5F

Table 40: Additional aliases

AHX 93 9F ALR 4B

AXS CB DCM C3 C7 CF D3 D7 DB DF

INS E3 E7 EF F3 F7 FB FF ISC E3 E7 EF F3 F7 FB FF

LAE BB LAS BB

LXA AB TAS 9B

XAA 8B

11.3 65DTV02 opcodes

This processor is an enhanced version of standard 6502 with some illegal opcodes.

Table 41: Additionally to 6502 illegal opcodes

BRA 12 SAC 32

SIR 42

Table 42: Additional pseudo instruction
GRA 12 4C

Table 43: These illegal opcodes are not valid

ANC 0B JAM 02

LDS BB NOP 04 0C 14 1C 80

SBX CB SHA 93 9F

SHS 9B SHX 9E

SHY 9C

Table 44: These aliases are not valid

AHX 93 9F AXS CB

LAE BB LAS BB

TAS 9B

11.4 Standard 65C02 opcodes

This processor is an enhanced version of standard 6502.

Table 45: Additional opcodes

ADC 72 AND 32

BIT 34 3C 89 BRA 80

CMP D2 DEC 3A

EOR 52 INC 1A

JMP 7C LDA B2

ORA 12 PHX DA

64tass v1.54 r1900 reference manual

69 / 72

PHY 5A PLX FA

PLY 7A SBC F2

STA 92 STZ 64 74 9C 9E

TRB 14 1C TSB 04 0C

Table 46: Additional aliases and pseudo instructions

CLR 64 74 9C 9E DEA 3A

GRA 4C 80 INA 1A

11.5 R65C02 opcodes

This processor is an enhanced version of standard 65C02.

Please note that the bit number is not part of the instruction name (like rmb7 $20). Instead
it's the first element of coma separated parameters (e.g. rmb 7,$20).

Table 47: Additional opcodes

BBR 0F 1F 2F 3F 4F 5F 6F 7F BBS 8F 9F AF BF CF DF EF FF

NOP 44 54 82 DC RMB 07 17 27 37 47 57 67 77

SMB 87 97 A7 B7 C7 D7 E7 F7

11.6 W65C02 opcodes

This processor is an enhanced version of R65C02.

Table 48: Additional opcodes
STP DB WAI CB

Table 49: Additional aliases
HLT DB

11.7 W65816 opcodes

This processor is an enhanced version of 65C02.

Table 50: Additional opcodes

ADC 63 67 6F 73 77 7F AND 23 27 2F 33 37 3F

BRL 82 CMP C3 C7 CF D3 D7 DF

COP 02 EOR 43 47 4F 53 57 5F

JMP 5C DC JSL 22

JSR FC LDA A3 A7 AF B3 B7 BF

MVN 54 MVP 44

ORA 03 07 0F 13 17 1F PEA F4

PEI D4 PER 62

PHB 8B PHD 0B

PHK 4B PLB AB

PLD 2B REP C2

RTL 6B SBC E3 E7 EF F3 F7 FF

SEP E2 STA 83 87 8F 93 97 9F

STP DB TCD 5B

TCS 1B TDC 7B

TSC 3B TXY 9B

TYX BB WAI CB

XBA EB XCE FB

Table 51: Additional aliases

CSP 02 CLP C2

HLT DB JML 5C DC

64tass v1.54 r1900 reference manual

70 / 72

SWA EB TAD 5B

TAS 1B TDA 7B

TSA 3B

11.8 65EL02 opcodes

This processor is an enhanced version of standard 65C02.

Table 52: Additional opcodes

ADC 63 67 73 77 AND 23 27 33 37

CMP C3 C7 D3 D7 DIV 4F 5F 6F 7F

ENT 22 EOR 43 47 53 57

JSR FC LDA A3 A7 B3 B7

MMU EF MUL 0F 1F 2F 3F

NXA 42 NXT 02

ORA 03 07 13 17 PEA F4

PEI D4 PER 62

PHD DF PLD CF

REA 44 REI 54

REP C2 RER 82

RHA 4B RHI 0B

RHX 1B RHY 5B

RLA 6B RLI 2B

RLX 3B RLY 7B

SBC E3 E7 F3 F7 SEA 9F

SEP E2 STA 83 87 93 97

STP DB SWA EB

TAD BF TDA AF

TIX DC TRX AB

TXI 5C TXR 8B

TXY 9B TYX BB

WAI CB XBA EB

XCE FB ZEA 8F

Table 53: Additional aliases
CLP C2 HLT DB

11.9 65CE02 opcodes

This processor is an enhanced version of R65C02.

Table 54: Additional opcodes

ASR 43 44 54 ASW CB

BCC 93 BCS B3

BEQ F3 BMI 33

BNE D3 BPL 13

BRA 83 BSR 63

BVC 53 BVS 73

CLE 02 CPZ C2 D4 DC

DEW C3 DEZ 3B

INW E3 INZ 1B

JSR 22 23 LDA E2

LDZ A3 AB BB NEG 42

PHW F4 FC PHZ DB

PLZ FB ROW EB

RTS 62 SEE 03

64tass v1.54 r1900 reference manual

71 / 72

STA 82 STX 9B

STY 8B TAB 5B

TAZ 4B TBA 7B

TSY 0B TYS 2B

TZA 6B

Table 55: Additional aliases

ASR 43 BGE B3

BLT 93 NEG 42

RTN 62

Table 56: This alias is not valid
CLR 64 74 9C 9E

11.10 CSG 4510 opcodes

This processor is an enhanced version of 65CE02.

Table 57: Additional opcodes
MAP 5C

Table 58: Additional aliases
EOM EA

12 Appendix

12.1 Assembler directives

.addr .al .align .as .assert .autsiz .bend .binary .binclude .bfor .block .break

.brept .byte .case .cdef .cerror .char .check .comment .continue .cpu .cwarn .data‐

bank .default .dint .dpage .dsection .dstruct .dunion .dword .edef .else .elsif .enc

.end .endc .endf .endif .endm .endn .endp .ends .endswitch .endu .endv .endweak

.eor .error .fi .fill .for .function .goto .here .hidemac .if .ifeq .ifmi .ifne .ifpl .in‐

clude .lbl .lint .logical .long .macro .mansiz .namespace .next .null .offs .option

.page .pend .proc .proff .pron .ptext .rept .rta .section .seed .segment .send .shift

.shiftl .showmac .sint .struct .switch .text .union .var .virtual .warn .weak .word

.xl .xs

12.2 Built-in functions

abs acos all any asin atan atan2 binary cbrt ceil cos cosh deg exp floor format

frac hypot len log log10 pow rad random range repr round sign sin sinh size

sort sqrt tan tanh trunc

12.3 Built-in types

address bits bool bytes code dict float gap int list str tuple type

64tass v1.54 r1900 reference manual

72 / 72

