
C64Debugger v0.64.56

by SLAJEREK/SAMAR

C64 Debugger (C) 2016-2017 Marcin Skoczylas
Vice (C) 1993-2017 The VICE Team

This is Commodore 64 code and memory debugger that works in real time.
It is quick prototyping tool where you can play with Commodore 64 machine
and its internals.
C64 Debugger embeds VICE v3.1 C64 emulation engine created by The VICE
Team.

See a promo video here: https://youtu.be/_s6s7qnXBx8

documentation layout by �eserWolF / Abyss-Connection

https://youtu.be/_s6s7qnXBx8

Contents

1 Preface 1

1.1 Installation . 1
1.2 Beer Donation . 1
1.3 Facebook page . 1

2 Global keyboard shortcuts 2

3 Debugger elements 4

3.1 Disassembly view . 4
3.2 Data dump view . 5
3.3 Memory map view . 5
3.4 Commodore 64 screen . 6
3.5 SID state view . 6
3.6 VIC state view . 6
3.7 VIC Display screen . 6

3.7.1 VIC Display screen keys 8
3.8 VIC Editor screen . 9

3.8.1 VIC editor shortcuts . 12
3.9 Monitor screen . 13
3.10 Breakpoints . 14

3.10.1 Breakpoints screen . 14
3.10.2 Breakpoints screen keys 15
3.10.3 Breakpoints �le . 15

4 Invoking the debugger 17

4.1 Command line options . 17
4.2 Code labels (symbols) . 18
4.3 Watches . 18
4.4 KickAss debug symbols . 19

4.4.1 C64Debugger - KickAss format 19
4.5 JukeBox playlist and automated tests 21

4.5.1 Global settings variables 22
4.5.2 Action object variables . 24

5 Appendix 25

5.1 Known bugs . 25
ii

5.2 To do . 26
5.3 Thanks for testing . 26
5.4 Beer Donation . 26
5.5 Contact . 27
5.6 License . 27
5.7 Acknowledgements . 27

5.7.1 VICE License . 27
5.7.2 Commodore ROMs . 29
5.7.3 Libraries . 29

5.8 Change log . 30

List of Tables

2.1 global keyboard shortcuts . 3

3.1 disassembly view . 4
3.2 data dump view . 5
3.3 VIC display screen buttons . 8
3.4 VIC display screen keys . 8
3.5 VIC editor screen layers . 9
3.6 VIC editor screen: raw text export blocks 11
3.7 VIC editor shortcuts . 13
3.8 monitor screen instructions . 14
3.9 breakpoint types . 14
3.10 breakpoints screen keys . 15
3.11 breakpoints �le entries . 16

4.1 command line options . 17
4.2 KickAss debug symbols tags . 21
4.3 JukeBox playlist global settings variables 23
4.4 JukeBox playlist entry variables 23
4.5 JukeBox playlist action object variables 24

5.1 libraries . 30

iv

1 Preface

1.1 Installation

On Windows you need to install Visual Studio C++ 2008 Redistributable pack-
age. On Windows 10 it is advised to run executable in Windows 7 compatibility
mode. Windows binary is now signed. Thanks to Yugorin/Samar for certi�cate
donation!

On Linux you need GTK3 libraries.

1.2 Beer Donation

If you like this tool and you feel that you would like to share with me some beers,
then you can use this link: http://tinyurl.com/C64Debugger-PayPal

Or send me some Bitcoins using this address:
1G3ZRT7j27QycHnkoo176t9j5a2J49fsXc

Donations will help me in development, thanks!

1.3 Facebook page

Join C64 Debugger Facebook page here:
http://tinyurl.com/C64Debugger-Facebook

http://tinyurl.com/C64Debugger-PayPal
http://tinyurl.com/C64Debugger-Facebook

2 Global keyboard shortcuts

shortcut function

Alt+ Enter Toggle fullscreen (MS Windows only)
Ctrl+ F1 Show only C64 screen
Ctrl+ F2 Show C64 disassembler, memory map and data dump
Ctrl+ F3 Show C64 disassembler with hex codes, memory map, data

dump and VIC state
Ctrl+ F4 Show C64 and 1541 disk disassembler and memory maps
Ctrl+ F5 Show states of chips
Ctrl+ F6 Show C64 disassembler and a big memory map
Ctrl+ F7 Show C64 and 1541 disk disassembler
Ctrl+ F8 Show Monitor console and debugging tools
Ctrl+ Shift+ F1 Show zoomed C64 screen.
Ctrl+ Shift+ F2 Show cycle-exact debugging tools with C64 screen zoom

and code labels
Ctrl+ Shift+ F4 Show VIC Display "lite" screen
Ctrl+ Shift+ F5 Show VIC Display screen
Ctrl+ Shift+ F6 Show VIC Editor screen
TAB Change focus to next view
Shift+ TAB Change focus to previous view
F9 Show Main menu screen
Ctrl+ B Show Breakpoints screen
Ctrl+ Shift+ S Show Snapshots screen
Ctrl+ T Mute sound On/O�
Ctrl+ W Replace memory dump view with watches view
Ctrl+ [Set slower emulation speed
Ctrl+] Set faster emulation speed
Ctrl+ 8 Insert D64 �le
Ctrl+ Shift+ 8 Detach D64 �le
Ctrl+ O Load PRG �le
Ctrl+ L Reload PRG & Start
Ctrl+ 0 Attach cartridge
Ctrl+ Shift+ 0 Detach cartridge
Ctrl+ Shift+ A Toggle auto-load �rst PRG from inserted disk

Continued on next page

chapter 2.0 C64Debugger v0.64.56 page 3

Table 2.1 � continued from previous page
shortcut function

Ctrl+ F Cartridge freeze button
Ctrl+ R Soft reset C64
Ctrl+ Shift+ R Hard reset C64
Ctrl+ Alt+ R Reset 1541 Disk drive
Ctrl+ Shift+ D Detach everything
Ctrl+ P Limit emulation speed On/O� (warp mode)
Ctrl+ Y Use keyboard arrows as joystick On/O�, Right Alt to �re
F10 Pause code or run to next instruction (step)
Ctrl+ F10 Step to next line (step over JSR)
Shift+ F10 Run one CPU cycle
F11 Run/continue emulation
Ctrl+ M Toggle data memory map/dump taken directly from RAM

or as-is with I/O and ROMs selected by $0001
Ctrl+ E Toggle show current raster beam position
Ctrl+ S Store snapshot to a �le
Ctrl+ D Restore snapshot from a �le
Shift+ Ctrl+ 1,
2, 3, ..., 6

Quick store snapshot to slot #1,#2,#3, ..., or #6

Ctrl+ 1, 2, 3, ...,
6

Quick restore snapshot from slot #1,#2,#3, ..., or #6

Ctrl+ U Dump C64's memory to �le
Ctrl+ Shift+ U Dump 1541 Drive's memory to �le
Ctrl+ Shift+ E Save current screen data to �le
Ctrl+
Backspace

Clear memory markers

Ctrl+ Shift+ P Save C64 screenshot and sprite bitmaps to PNG �les
F7 Browse attached disk image
F3 Start �rst PRG from disk image
Ctrl+ ; Select next code symbols segment
Ctrl+ ' Select previous code symbols segment

Table 2.1: global keyboard shortcuts

3 Debugger elements

3.1 Disassembly view

action function

Mouse Click on memory address Add/remove breakpoint
~ (tilde key) Add/ remove breakpoint
Arrow Up/ Down Scroll code one instruction up/ down
Page Up/ Page Down or
Shift+Arrow Up/ Shift+Arrow
Down

Scroll code by $0100 bytes up/ down

Space Toggle tracking of code display by cur-
rent PC

Enter Enter code editing mode (assemble)
[or] Scroll code one byte up/ down
Arrow Left/Right If not editing code: follow code jumps

and branches using Right-Arrow key,
and move back with Left-Arrow key.
When argument is a memory address
then Memory Dump view will be
scrolled to that address
If editing code and hex values visible:
change edited hex value

CTRL+G <addr> Move cursor to speci�c address (f.e.
CTRL+ G EA31)

CTRL+ J JMP to current cursor's address
(change CPU PC)

Mouse wheel Scroll code (faster with Shift pressed)

Table 3.1: disassembly view

chapter 3.3 C64Debugger v0.64.56 page 5

3.2 Data dump view

action function

Mouse Click on hex value Select hex value
Double Mouse Click on hex value Scroll disassemble view to selected ad-

dress
Arrow keys Move editing cursor
Page Up/ Page Down or Shift+ Ar-
row Up/ Shift+ Arrow Down

Scroll code by $100 bytes up/ down

Enter or 0-9 or A-F Start editing value
Ctrl+ Mouse Click Scroll Disassembly to code address that

stored that value
Alt+ Shift Change CBM charset
Ctrl+ K Change colour mode on/o� for

sprites/characters
Ctrl+ G <addr> Move cursor to speci�c address (f.e.

CTRL+ G 0400)
Ctrl+ V Paste hex codes from clipboard into

memory. Simple separators are parsed,
also the text can contain addresses as 4
hex digits

Table 3.2: data dump view

3.3 Memory map view

Memory map shows current values of memory cells. Ctrl+ M switches bank to
RAM. Each memory cell value is mapped into RGB or Gray or None. In RGB
mode red are values from 0 to 85, green are values from 85 to 170 and blue are
values from 170 to 255. In Gray mode all values are mapped into grayscale colors.

Memory access:

• white shows current PC

• blue marks read access

• red marks write access

You can change colours to ICU-standard (read marked by green) in Settings.

chapter 3.7 C64Debugger v0.64.56 page 6

You can Mouse Click inside memory map to scroll data dump view to a clicked
memory address. You can double Mouse Click to scroll disassemble view to a
memory address under cursor. You can Ctrl+ Mouse Click to scroll Disassembly
to code address that stored value under cursor.

You can zoom-in using mouse wheel and move around by holding right mouse
click (Windows, Linux, MacOS) or use mulitouch gestures such as pinch zoom and
scroll using two �ngers (MacOS only). You can select desired control behaviour
in Settings.

3.4 Commodore 64 screen

All keys are mapped as original Commodore 64 keyboard. RUN+ STOP is
mapped to ESC key. Left Control key is not mapped and reserved for keyboard
shortcuts.

Right Control is mapped into C64 Control key. RESTORE is not mapped, but
you can chang this in Settings.

When joystick is turned on then you can control selected ports using arrow keys,
and right-alt as �re.

3.5 SID state view

You can click waveforms to mute SID channels. Detected musical notes are
displayed, these are based on standard 440Hz A4 notation.

3.6 VIC state view

This view shows state of VIC registers. You can lock colors using Mouse Left
Click, or change them using Mouse Right Click, these will be re�ected in previews
like Memory Dump or VIC Display view.

3.7 VIC Display screen

The VIC Display screen is like an X-Ray for the VIC chip. Whole frame is
recorded and you can access state of VIC and CPU for each cycle of the frame.

chapter 3.7 C64Debugger v0.64.56 page 7

It can be activated by Ctrl+ Shift+ F5. VIC Display renders exact state of VIC
for selected cycle. As you know, a lot of e�ects are using tricks of the VIC chip,
so it will not show the C64 screen in its entirety, as it is not meant to.

It will always show a screen how it would be rendered for selected cycle of the
VIC chip.

You can just move mouse cursor over the VIC Display frame and see how VIC
registers impact rendering of the C64 screen. Note that status of CPU registers
and VIC state view is marked in light-red color background, this is to indicate
that state is locked and shows selected raster cycle. The disassembly code is
moved to the place where raster beam was executing code in the frame. Space
bar changes disassembly code lock. Also, when you move the cursor over VIC
Display, the memory dump view cursor points to address which is under mouse
cursor.

When you click on the VIC Display you can lock cursor and then move it with
keyboard arrow keys, holding Shift will increase the step. You can unlock the
cursor by pressing Space Bar or by Mouse-Clicking on locked cursor.

There are buttons to control the VIC Display, you can see what are current values
of VIC bank, screen, bitmap etc. and you can force and change them by clicking
on values: green color means it is a current state for selected cycle, red is when
you forced the selection. Do not forget, that if you select something making it
red, then the VIC Display will show your selection, not what is currently going
on on the screen.

button function

Scroll will switch if VIC scroll register should be applied to VIC
Display position. When code is opening side borders then
applying the scroll register may make the display jump a
lot, so you can select if you need this behaviour.

Bad Line shows a bad line condition when text is red, switching it
on will display lines that are in bad line condition.

Border changes if side border should be shown. It has three states:
no border, viewable area with border, full frame scan.

Grid changes if a grid should be displayed.
Sprites changes if sprites graphics should be rendered in the VIC

Display.
Frames changes if frames around sprites should be visible.
Break adds VIC raster breakpoint, the text is in red when a se-

lected line has already the breakpoint set.
Continued on next page

chapter 3.8 C64Debugger v0.64.56 page 8

Table 3.3 � continued from previous page
button function

Show PC for informs in which auto-scroll code disassembly mode we are,
you can click on the mode and change it to other mode
(Raster / Screen / Bitmap / Colour).

VIC Display records state of VIC each cycle in the frame and with the
mouse cursor you can see what is in the frame. The X
key changes what we "look" at: where was the code in
a given cycle (Raster mode) or where the code saved the
pixel in memory (Raster / Screen / Bitmap / Colour). For
Screen / Bitmap / Colour modes the memory view under
C64 screen will be moved to address that holds the value
at cursor. For charset mode the memory view cursor will
point to a charset and de�nition of char under cursor.

Table 3.3: VIC display screen buttons

You can Right-Click on C64 Screen in right top to replace it to a zoomed raster
view.

3.7.1 VIC Display screen keys

shortcut function

Arrow keys Move locked cursor
Shift+ Arrow
keys

Move locked cursor in large steps

~ (tilde key) Toggle VIC raster breakpoint
L Lock/Unlock mouse cursor
Space Bar Lock/Unlock Disassemble auto-scroll code
X Select next auto-scroll code mode
R Select auto-scroll code to Raster
S Select auto-scroll code to Screen (Text)
B Select auto-scroll code to Bitmap
C Select auto-scroll code to Colour

Table 3.4: VIC display screen keys

chapter 3.8 C64Debugger v0.64.56 page 9

3.8 VIC Editor screen

The VIC Editor screen is for displaying and editing graphics in real time. All
painting is done in a live C64 emulation and is immediately re�ected in C64 RAM
and VIC chip.

Layers window shows available layers, default layers are:

layer description

Unrestricted you can paint on this layer in so-called hires unrestricted
mode, thus using C64 colors without any limits

Sprites this layer is used for painting on all visible sprites in this
frame. These are virtual sprites, so in particular de-
multiplexed sprites. Note, that displaying of virtual sprites
from this layer is not implemented yet, thus the "V" button
changes only if you can paint on this layer. However, you
can see these sprites as they are rendered in the C64 Screen,
so actually you can paint on them and see changes.

C64 Sprites these are sprites that are in a raster line under cursor, just
the same like in VIC Display view.

Display this is the same VIC Display which works exactly the same
way, thus exact state of VIC for selected cycle under cursor
is rendered.

Reference this works like Unrestricted but has full palette and images
imported into that layer are displayed as-is. Painting on
that layer is disabled by default, you can paint only when
this layer is selected.

C64 Screen this is the C64 Screen as it was rendered by VIC, note that
if emulation is paused, then painting on this layer will not
have immediate a�ect - the VIC must render the screen
�rst to have changes visible.

Table 3.5: VIC editor screen layers

There are �V� buttons near layers names, these set visibility of the layer.

You can select the layer by clicking on it:

• When layer is selected, all painting is done on that selected layer, even if it
is not visible.

chapter 3.8 C64Debugger v0.64.56 page 10

• When no layer is selected, then painting is made from top-to-bottom, it is
driven to a layer that has higher priority �rst, that is visible and has a pixel
under selected x/y mouse position which is inside that layer (for example if
there are no sprites under mouse cursor, then sprites layer will be skipped
and painting will be done on C64 bitmap).

Painting depends on selected mode. In all modes you are free to paint, however if
you exceed available number of colors the painting will be blocked. To un-block
and force color replace you can hold Ctrl key (this can be con�gured in Settings).

The replacement color will be selected and it will be replaced:

• in Hires Bitmap this will be color under cursor in 8x8 char,

• in Multi-Color Bitmap this will be color that is less-used in 8x8 char (has
least number of pixels),

• on Sprite this will always be individual sprite color ($D027+).

Painting with RMB On Sprite will always use background color ($D021).

You can paint in dither mode by holding Alt key: pixel colors are alternating
between LMB and RMB. When you paint �rst pixel, a dithering grid will be
created, and by holding Alt key this grid will be used for painting. The dithering
grid will be reset when you release the Alt key.

Sprite window shows current selected sprite. You can lock selected sprite by
clicking mouse on sprite with Ctrl+ Shift. Then you can select color to use for
paiting by clicking on the color in Sprite window or by pressing (0, Shift+1,
Shift+2, Shift+3).

To change locked color just select a new color from palette, this will replace the
color of locked Sprite. Note that $D021, $D025 and $D026 are shared with other
sprites. If you not select color in Sprite window, then painting on Sprite will try
to use selected color from the Palette, if color is not in available colors then the
painting will be blocked and to un-block and force color replace use the Ctrl key.

You can change multicolor, horizontal or vertical stretch by clicking buttons.

You can change positions of Sprites the same way, just lock/ select a Sprite by
pressing Ctrl+ Shift+ Mouse Click on that sprite, and then use Arrow Keys to
move that selected sprite (Arrow Key Left/Right/Up/Down).

Note, that changing colors, positions and settings of Sprites is quasi-intelligent:

in current frame's code that was run, places of LDA/ LDX/ LDY and STA/
STX/ STY pairs are found for sprite colors or positions and values of LDA's are

chapter 3.8 C64Debugger v0.64.56 page 11

replaced based on current raster position. Thus, you can write your own display
and colors multiplexer code, run it and when you change colors of sprites the code
in C64 RAM will be replaced accordingly, even if you use Sprite multiplexing.

Charset window shows current charset, you can select char and use it for painting
in text modes.

It is possible to import PNG and convert it to current mode, hires/multicolor
bitmap and hires text modes are supported. PNGmust have resolution of 320x200
or 384x272.

Colors are matched to nearest C64 colors (nearest neighbour). For bitmap modes
colors in 8x8 are set based on most used color values in 8x8, thus �rst a color
that has largest number of occurrences in 8x8 char is found and it is replaced for
converting in that 8x8 char, then in multicolor the another one, etc. If sprites
are present in the screen, colors are matched to colors selected in the sprite and
pixels are converted, note that no automatic color replacing is possible at this
moment. The 384x272 resolution includes also borders, so if you have sprites in
side border the pixels will be converted accordingly.

Note, that a work�ow with sprites is that you should have some init PRG proce-
dure that sets position of sprites. The converter is quasi-intelligent, thus is trying
to �nd places of LDA/STA for colors in the current frame.

You can also import KLA (Bitmap Multi-Color), ART (Bitmap Hires), DD
(Bitmap Hires) and export to KLA, ART or raw text depending on selected
mode.

Note: when you export to raw text it contains these blocks:

area description

$0000-$03E7 Current character video memory (screen). For example
values stored in $0400-$07E7.

$03E7-$07CE Color memory (values stored in $D800-$DBE7)
$07CF Background color (value stored in $D021)

Table 3.6: VIC editor screen: raw text export blocks

Zooming and panning of the canvas is performed using mouse, you can use Mouse
Scroll for zooming and hold Space Bar for panning. Also, you can Mouse Right-
Click on Preview Window to quickly move the painting area to selected position.
When you zoom-in deeply then numbers such as pixel addresses and values will
be also shown.

chapter 3.8 C64Debugger v0.64.56 page 12

3.8.1 VIC editor shortcuts

(LMB=left mouse button, RMB=right mouse button)

shortcut function

Ctrl+ N Create new picture and setup C64 for painting
LMB, RMB Paint using selected color
Alt+ LMB,
Alt+ RMB

Paint dither

Ctrl+ LMB or
Ctrl+ RMB

Force painting / replace color

Shift+ LMB Get color at cursor as LMB color
Shift+ LMB Get color at cursor as RMB color
X Exchange LMB/RMB colors
0 Set LMB color from $D021 color
Shift+ 0 Get color at cursor as background ($D021) color
RMB on Pre-
view Window

Move display

Space Bar (hold
in main display)

Move display

Mouse Scroll Zoom in/out the canvas
Shift+ Mouse
Scroll

Quickly zoom in/out the canvas

[or] Select Circle Brush size
Ctrl+ [or Ctrl+
]

Select Rectangle Brush size

/ Change Preview Window scale
' Show cursor pointer in Preview Window
~ (tilde key) Select next visible layer
12345678 QW-
ERTYUI

Select color

Shift+1,
Shift+2, Shift+3

Select sprite painting color num ($D025, $D027+, $D026)

F Show/ hide all windows
D Show/ hide preview window
P Show/ hide colors palette
C Show/ hide character set window
S Show/ hide sprite window
L Show/ hide layers window
Ctrl+ G Show/ hide sprite frames
Ctrl+ Shift+
Mouse-Click

Lock/ Select sprite

Continued on next page

chapter 3.9 C64Debugger v0.64.56 page 13

Table 3.7 � continued from previous page
shortcut function

Arrow Left/
Right/ Up/
Down

Move selected sprite

Ctrl+
Backspace

Clear screen

Ctrl+ Z Undo
Ctrl+ Shift+ Z Redo
Ctrl+ S Save image in VIC Editor (*.vce) format
Ctrl+ O Load/Import image (vce, png, kla, art, dd)
Ctrl+ Shift+ E Export image to kla/art/raw text
Ctrl+ B Toggle top bar with icons
ESCAPE Back to C64 Debugger

Table 3.7: VIC editor shortcuts

3.9 Monitor screen

You can use these instructions in code monitor:

command function

HELP shows help
DEVICE C / D / 8 set current device (C64/Disk/Disk)
F <from address> <to address>
<value>

�ll memory with value

C <from address> <to address>
<destination address>

compare memory with memory

H <from address> <to address>
<value> [<value> ...]

compare memory with values

T <from address> <to address>
<destination address>

copy memory

L [PRG] [from address] [�le name] load memory (with option from PRG
�le)

S [PRG] <from address> <to ad-
dress> [�le name]

save memory (with option as PRG �le)

D [NH] <from address> <to ad-
dress> [�le name]

disassemble memory (with option NH
without hex codes)

G <address> jmp to address
Continued on next page

chapter 3.10 C64Debugger v0.64.56 page 14

Table 3.8 � continued from previous page
command function

Table 3.8: monitor screen instructions

3.10 Breakpoints

Breakpoint stops the execution of code depending on some state and situation.

3.10.1 Breakpoints screen

In the Breakpoints screen (Ctrl + B) you can click using mouse, or Enter or Space
key to enable or disable monitoring of selected type of the breakpoint.

New value can be added by selecting "...." either by moving the cursor with the
arrow keys or clicking using mouse.

These are possibilities:

type description

VIC / CIA /
NMI

stops when selected interruption occurs

CPU PC the code will stop as the processor will start to perform
instruction from selected address

MEMORY stops when there will be attempt to write to the memory
of the set value, for example: 4FFF <= 3F will stop code
when there will be attempt to write to the cells 4FFF value
less or equal to 3F. To break at any write access you can
use <= FF

RASTER stops when raster reaches the set line value

Table 3.9: breakpoint types

Breakpoints CPU type PC can also be set in the disassembler view by clicking
the mouse cursor on the address or by pressing the ~ (tilde) key.

chapter 3.10 C64Debugger v0.64.56 page 15

The same applies to 1541 Drive breakpoints on right side of the screen.

3.10.2 Breakpoints screen keys

key function

Arrow keys Move around
Enter or Space-
bar

Toggle value or start editing breakpoint

Table 3.10: breakpoints screen keys

3.10.3 Breakpoints �le

Breakpoints �le stores information about breakpoints, addresses and values.

Possible entries are:

entry function example

break xxxx break when PC reaches ad-
dress xxxx

Example: break 3FFF

breakraster xxx break when raster reaches
line number xxx

Example: breakraster
40

breakmem xxxx oo yy break on memory write to
address xxxx when expres-
sion oo yy is true. Possible
operators oo are: ==, !=,
<, <=, >, >=

Example: breakmem
D018<=FF

breakvic break on VIC interrupt
breakcia break on CIA interrupt
breaknmi break on NMI interrupt
setbkg xxxx yy fake marker, when PC

reaches address xxxx then
background colour register
($D020/$D021) is set to
value yy, you can mix this
type of breakpoint with nor-
mal "break" to also stop
code execution

Continued on next page

chapter 3.10 C64Debugger v0.64.56 page 16

Table 3.11 � continued from previous page
entry function example

Table 3.11: breakpoints �le entries

All entries are not case sensitive. Please check KickAssembler documentation,
section 9.5: Writing to User De�ned Files.

4 Invoking the debugger

4.1 Command line options

command function

-help show help
-layout <id> start with layout id <1-12>
-breakpoints
<�le>

load breakpoints from �le

-symbols <�le> load symbols (code labels)
-watch <�le> load watches
-wait <ms> wait before performing tasks
-prg <�le> load PRG �le into memory
-d64 <�le> insert D64 disk
-tap <�le> attach TAP/T64
-crt <�le> attach cartridge
-jmp <addr> jmp to address, for example jmp x1000, jmp $1000 or jmp

4096
-autojmp automatically jmp to address if basic SYS is detected
-alwaysjmp always jmp to load address of PRG
-autorundisk automatically load �rst PRG from inserted disk
-unpause force code running
-snapshot <�le> load snapshot from �le
-soundout <"de-
vice name" | de-
vice number>

set sound out device by name or number

-playlist <�le> load and start jukebox playlist from json �le
-clearsettings clear all con�g settings
-pass pass parameters to already running instance

if instance is not running a new one will be spawned

Table 4.1: command line options

chapter 4.3 C64Debugger v0.64.56 page 18

Other command line options are the same as selected emulation engine (thus see
Vice documentation for additional command line options).

4.2 Code labels (symbols)

You can load a symbols �le wit code lables via -symbols <�le> command line
option. Also, if near loaded PRG a �le with "labels" �le extension is found then
it is loaded automatically. Two �le formats are accepted, a standard Vice code
labels format and 64Tass compatible �le format.

Vice code labels �le format example:

al C:d019 .vic2_int_reg

Note, that label name's leading dot is skipped.

64Tass labels �le format example:

vic2_int_reg = $D019

4.3 Watches

Watches view is a simple way to display selected values in memory with a label.

You can replace the memory dump view by watches view with Ctrl+ W key. The
feature is simple display of hex value stored in associated memory address, but
this will be expanded in future to allow also di�erent data representations.

To add watches you can do that only via external �le that you can load from a
command line.

The format of �le is simple, and there are two formats accepted.

Simple watches format example:

d019 vic2_int_reg

chapter 4.4 C64Debugger v0.64.56 page 19

64Tass-labels compatible format example:

vic2_int_reg = $D019

For example watches �le please refer to:

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/

Examples/example.watch

4.4 KickAss debug symbols

With Mads Nielsen (Slammer/Camelot) we created integration based on Stein
Pedersen's idea.

This was written with great help of Mads Nielsen:

4.4.1 C64Debugger - KickAss format

Here is the basic format. To make it easier to read I have given a param named
'values' that explains the values of the comma separated lists.

<C64debugger version="1.0">

<Sources values="INDEX,FILE">

0,KickAss.jar:/include/autoinclude.asm

1,/Users/Mads/Code/C64CodeRepos/C64Code/atari/lib/atarifile_4bank.h

<Sources/>

<Segment name="BANK1"

values="START,END,FILE_IDX,LINE1,COL1,LINE2,COL2">

<Block name="Program">

$1000,$1002,2,16,9,16,11

<Block/>

<Block name="Vectors">

$1ffa,$1ffb,2,11,3,11,7

$1ffc,$1ffd,2,12,9,12,13

$1ffe,$1fff,2,13,9,13,13

<Block/>

<Segment/>

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/example.watch
https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/example.watch

chapter 4.4 C64Debugger v0.64.56 page 20

<Segment name="BANK2"

values="START,END,FILE_IDX,LINE1,COL1,LINE2,COL2">

<Block name="Program">

$1000,$1000,2,28,3,28,5

$1001,$1001,2,29,3,29,5

$1002,$1002,2,30,3,30,5

$1003,$1004,2,35,3,35,5

$1005,$1006,2,36,3,36,5

<Block/>

<Block name="Vectors">

$1ffa,$1ffb,2,23,3,23,7

$1ffc,$1ffd,2,24,9,24,13

$1ffe,$1fff,2,25,9,25,13

<Block/>

<Segment/>

<Labels values="SEGMENT,ADDRESS,NAME">

Default,$d011,vic2_screen_control_register1

</Labels>

<Watches values="SEGMENT,ADDRESS,ARGUMENT">

Default,$3000

Default,$2001,2,hex8

BANK2,$3000,,text

</Watches>

<Breakpoints values="SEGMENT,ADDRESS,ARGUMENT">

BANK1,$1000,nmi

BANK2,$1003,

<Breakpoints/>

<C64debugger/>

So everything is inside a <C64debugger> tag with a version number. Inside are
di�erent tags:

tag description

<C64debugger> <C64debugger> tag with a version number
<Sources> There will always be one <Sources> tag with all the source

�les and their indices.
<Segment> There will be one or more <Segment> tags - one for each

segment. Segments contains zero or more <Block> tags
and inside these are the usual debug data.

Continued on next page

chapter 4.5 C64Debugger v0.64.56 page 21

Table 4.2 � continued from previous page
tag description

<Breakpoints> There will always be one <Breakpoints> tag. It contains
one line for each breakpoint. First arg is the segment it
is de�ned in (so if you turn on and o� segments you can
switch breakpoints on an o� too). Second argument is the
address it is de�ned at (You will not need it in eg. .break
"nmi", but it is always there). Third argument is whatever
the user writes in the .break argument and might be empty.
So .break "nmi" and .break "cia" will give nmi and cia.

<Labels> <Labels> tag adds a label at address. First argument is
the segment name, second argument is the address and last
argument is label text.

<Watches> <Watches> is similar to labels but it will appear in watches
view. First argument is the segment name, second argu-
ment is the address, then third argument is number of val-
ues to display, and fourth argument declares a representa-
tion which can be:
hex8, hex16, hex32, or simply h, h8, h16, h32 is hex repre-
sentation of value interpreted as 8, 16 or 32 bits.
signed8, signed16, signed32, or simply s8, s16, s32 is a
signed decimal representation of value interpreted as 8, 16
or 32 bits.
unsigned8, unsigned16, unsigned32 or simply u8, u16, u32
is an unsigned decimal representation of value interpreted
as 8, 16 or 32 bits.
text signi�es text representation.

Table 4.2: KickAss debug symbols tags

Please note that representation and number of values are not yet displayed in
Watches view, this will be updated in upcoming version. Now, the Watches view
displays only one hex 8-bit value.

4.5 JukeBox playlist and automated tests

JukeBox playlist is a way to automate things in the C64 Debugger. The idea is
that you can write a JSON �le in which actions and settings for the jukebox are
set.

chapter 4.5 C64Debugger v0.64.56 page 22

Examples of usage include:

• simply playing demos from a playlist, with fade out/fade in transitions,
good for the big screen!

• set warp speed on, load demo, set warp o�, automatically press space on
notes, then dump memory in selected frames.

• load game, automatically move joystick, etc.

Note, that all timings selected are in seconds or milliseconds, but are re-calculated
to VIC synchronization frames, so the timings will be always exact and synced
to VIC refresh. The frame number depends on selected system (PAL, NTSC).
Calls to move on with transitions, dumping memory and other actions are always
synchronized to VIC and are performed at end of each VIC frame.

JSON format is as follows:

1. All "global" settings, such as if fast boot kernal patch should be included.

2. Entries for each �le load.

3. Each entry has its own settings (such as �le path) and actions (such as key
strokes, joystick movements, memory dumps, etc).

For example �le please refer to:

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/

Examples/jukebox-win32.json

4.5.1 Global settings variables

variable description

FastBootPatch=true/false should kernal be patched with fast boot
patch

DelayAfterReset=real number pauses all actions after machine reset
for selected number of milliseconds

ShowLoadAddress=true/false shall the load address be displayed on
screen?

FadeAudioVolume=true/false should the audio be faded out/in on
transitions?

SetLayout=integer number set layout number on start
ShowPopup=true/false should popup with demo details be dis-

played on transition?
Continued on next page

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/jukebox-win32.json
https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/jukebox-win32.json

chapter 4.5 C64Debugger v0.64.56 page 23

Table 4.3 � continued from previous page
variable description

PopupFadeTime=real number duration time of fade out/in popup
PopupVisibleTime duration time of popup visibility
Playlist=[] array of playlist entries

Table 4.3: JukeBox playlist global settings variables

In Playlist array there are entries of �les that will be loaded, in order. Each entry
has its own seetings and actions.

Playlist Entry variables:

variable description

Name=string name of demo/program to be displayed
in popup

FilePath=string path to a �le to be loaded (can be d64,
prg, crt or snap)

ResetMode=hard/soft which reset mode should be used before
loading this �le

AutoRun=true/false should �le be auto run (auto run
means: perform reset, load �le and run)

RunFile=integer number which entry from D64 directory should
be loaded

WaitTime=real number for how long this entry should be
played, wait time before transition to
next entry

DelayAfterReset=real number pauses all actions after machine reset
for selected number of milliseconds

FadeInTime=real number time of fade in transition at start of this
entry

FadeOutTime=real number time of fade out transition at end of this
entry

Actions=[] array of actions to be performed during
this entry

Table 4.4: JukeBox playlist entry variables

chapter 4.5 C64Debugger v0.64.56 page 24

In Actions array there are actions that will be performed during playing of this
entry.

4.5.2 Action object variables

variable description

DoAfterDelay=real number Wait selected number of seconds and
perform action.

KeyDown=string (one ASCII char-
acter)

Push and hold key on C64 keyboard.
The key is ASCII character.

KeyUp=string (one ASCII charac-
ter)

Key up and do not hold anymore a key
on C64 keyboard. The key is ASCII
character.

KeyDownCode=integer number Push and hold key on C64 keyboard.
The key is selected by its ASCII code1.

KeyUpCode=integer number Key up and do not hold anymore a key
on C64 keyboard. The key is selected
by its ASCII code.

Joystick1Down=string
or Joystick1Up=string
or Joystick2Down=string
or Joystick2Up=string

Push selected joystick axis (Down) or
release joystick axis (Up). The axis
name is a string of these values: �re,
up, down, left, right, sw, nw, se, sw

WarpMode=true/false Set warp mode On/O�
DumpC64Memory=string Dump C64 Memory to a �le speci�ed

by path
DumpDiskMemory=string Dump Disk drive Memory to a �le spec-

i�ed by path
DetachCartridge=true/false Detach (remove) cartridge from slot
SaveScreenshot=string Save Screenshot as PNG to �le speci�ed

by path
ExportScreen=string Export Screen as kla/art/raw text to

�le speci�ed by path. The �le extension
will be added automatically based on
current C64 display mode

Shutdown Shutdown the C64 Debugger (Quit pro-
gram)

Table 4.5: JukeBox playlist action object variables

1For list of special scan codes refer to: https://sourceforge.net/p/c64-debugger/code/

ci/master/tree/MTEngine/Engine/Core/SYS_KeyCodes.h

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/MTEngine/Engine/Core/SYS_KeyCodes.h
https://sourceforge.net/p/c64-debugger/code/ci/master/tree/MTEngine/Engine/Core/SYS_KeyCodes.h

5 Appendix

Step over JSR works in a way that a temporary PC breakpoint is created in
next line. Code will be stopped when PC hits that breakpoint address, in most
situations just after returing from JSR. Note that if code never returns from JSR
this breakpoint will still be "valid".

You can also drag & drop �le into C64 Debugger window on MacOS & Windows.
Depending on selected option in Settings the �le can be auto-started, also from
disk image �le.

You can browse the contents of attached disk image by pressing F7 key, and run
the �rst PRG by F3 key. Note that if C64 Screen is selected then these keys are
normally sent to the C64. Thus to let these key shortcuts work you need to �rst
un-select the C64 Screen.

5.1 Known bugs

When snapshot is loaded then selected settings are not updated in the Settings
menu (such as SID type, C64 machine model, attached disks, etc).

Loading NTSC snapshot into PAL machine or vice-versa is not supported and
will hard reset the C64.

It is not possible to zoom Drive 1541 memory map.

Clicking Drive 1541 memory map does not properly set selected value in memory
dump view.

Command line arguments are passed to VICE. VICE complains that arguments
that have been parsed by C64 Debugger are not OK.

On some window managers �avours in Linux system open/save �le dialogs are
behaving incorrectly.

When you move a Sprite in VIC Editor and Sprite is on top of other Sprite they
will 'pile up', also there are no means to select Sprite below a Sprite... this is not
ready yet and is planned for next release.

chapter 5.4 C64Debugger v0.64.56 page 26

5.2 To do

• Add memory map zooming for Drive 1541.

• Add working on �les directly instead of C64 memory (�le adapter is ready),
to view/edit �les directly.

• Add custom layouts with layout editor.

• Add PAL CRT emulation.

• Add Save Screenshot keyboard shortcut.

5.3 Thanks for testing

• Mr Wegi/Elysium - valuable suggestions and cartridge knowledge

• ElfKaa/Avatar

• Don Kichote/Samar

• Isildur/Samar

• Yugorin/Samar

• Scan/House

• Dr.J/Delysid

• Brush/Elysium

• Ruben Aparicio

• 64 bites

• Stein Pedersen

• Mads Nielsen

5.4 Beer Donation

If you like this tool and you feel that you would like to share with me

chapter 5.7 C64Debugger v0.64.56 page 27

some beers, then you can use this link:

http://tinyurl.com/C64Debugger-PayPal

5.5 Contact

If you have ideas or found a bug feel free to contact me at slajerek@gmail.com

5.6 License

C64 Debugger is (C) Marcin Skoczylas, aka Slajerek/Samar.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

The ROM �les are Copyright (C) by Commodore Business Machines.

5.7 Acknowledgements

Portions of this Software may utilize the following copyrighted material, the use
of which is hereby acknowledged:

5.7.1 VICE License

VICE, the Versatile Commodore Emulator

http://tinyurl.com/C64Debugger-PayPal
slajerek@gmail.com

chapter 5.7 C64Debugger v0.64.56 page 28

Copyright C 1998-2008 Andreas Boose

Copyright C 1998-2008 Dag Lem

Copyright C 1998-2008 Tibor Biczo

Copyright C 1999-2008 Andreas Matthies

Copyright C 1999-2008 Martin Pottendorfer

Copyright C 2000-2008 Spiro Trikaliotis

Copyright C 2005-2008 Marco van den Heuvel

Copyright C 2006-2008 Christian Vogelgsang

Copyright C 2007-2008 Fabrizio Gennari

Copyright C 1999-2007 Andreas Dehmel

Copyright C 2003-2005 David Hansel

Copyright C 2000-2004 Markus Brenner

Copyright C 1999-2004 Thomas Bretz

Copyright C 1997-2001 Daniel Sladic

Copyright C 1996-1999 Ettore Perazzoli

Copyright C 1996-1999 AndrÃ c© Fachat

Copyright C 1993-1994, 1997-1999 Teemu Rantanen

Copyright C 1993-1996 Jouko Valta

Copyright C 1993-1994 Jarkko Sonninen

Copyright C 1999-2017 Martin Pottendorfer

Copyright C 2007-2017 Fabrizio Gennari

Copyright C 2009-2017 Groepaz

Copyright C 2010-2017 Olaf Seibert

Copyright C 2011-2017 Marcus Sutton

Copyright C 2011-2017 Kajtar Zsolt

chapter 5.7 C64Debugger v0.64.56 page 29

Copyright C 2016-2017 AreaScout

Copyright C 2016-2017 Bas Wassink

This program is free software; you can redistribute it and/or nodify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

5.7.2 Commodore ROMs

The ROM �les embedded in the source code are Copyright C by Commodore
Business Machines.

5.7.3 Libraries

library description

libjpeg is a free software library written for JPEG image compres-
sion.

libjson Copyright 2010 Jonathan Wallace. All rights reserved.
libpng version
1.5.2

March 31, 2011 Copyright (c) 1998-2011 Glenn Randers-
Pehrson
(Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
(Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat,
Group 42, Inc.)

LodePNG version 20140801 Copyright (c) 2005-2014 Lode Vande-
venne

minizip Version 1.01e, February 12th, 2005 Copyright (C) 1998-
2005 Gilles Vollant

Continued on next page

chapter 5.8 C64Debugger v0.64.56 page 30

Table 5.1 � continued from previous page
library description

mtrand Coded by Takuji Nishimura and Makoto Matsumoto.
Ported to C++ by Jasper Bedaux 2003/1/1 (see http:

//www.bedaux.net/mtrand/).
The generators returning �oating point numbers are based
on a version by Isaku Wada, 2002/01/09
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji
Nishimura, All rights reserved.

utf8 Copyright 2006 Nemanja Trifunovic
zlib Copyright (C) 1995-2006, 2010 Mark Adler
portaudio Copyright (c) 1999-2002 Ross Bencina and Phil Burk
pthread-win32 https://www.sourceware.org/pthreads-win32/

mman-32 https://github.com/witwall/mman-win32

libclipboard Copyright (c) 2016 Jeremy Tan
https://github.com/jtanx/libclipboard

Table 5.1: libraries

5.8 Change log

v0.64.56

• Added: PALette palette.

• Added: CHARSET mode in VIC Display

• Added: Joystick keys can be de�ned as regular keyboard shortcut keys

• Added: New actions to JukeBox scripting: save screenshot, export screen
to kla/art/raw, shutdown the C64 Debugger

• Added: Edit values of registers in VIC/SID/CIA/VIA state views

• Added: Quick disassemble mouse scroll with Shift pressed

• Added: Copy (Ctrl+C) and Paste (Ctrl+V) assembly line as text in Disas-
sembly view

• Added: Copy (Ctrl+C) and Paste (Ctrl+V) value (or address with Shift
pressed) in Memory Dump view

http://www.bedaux.net/mtrand/
http://www.bedaux.net/mtrand/
https://www.sourceware.org/pthreads-win32/
https://github.com/witwall/mman-win32
https://github.com/jtanx/libclipboard

chapter 5.8 C64Debugger v0.64.56 page 31

• Added: Create new Picture in VIC Editor using Ctrl+N

• Added: Export and import Charset in VIC Editor

• Added: Export and import Sprite in VIC Editor

• Added: New unrestricted image Reference layer in VIC Editor

• Added: TAP/T64 load and Tape menu in Settings (thanks to Pontus Berg
and Jose�n Svensson for reminding me this!)

• Added: Loading sources and debug info from new *.dbg �le format. You
can view diassembled code together with original source code in new
Ctrl+Shift+F3 view. Thanks to Mads Nielsen for his valuable suggestions
on the integration of the debug info �le format in his KickAssembler. Idea
by Stein Pedersen.

• Added: Atari 800/65XE emulator aka 65XE Debugger (early draft)

• Added Linux: New compile Make�le by Kuba Skrzypnik, Eclipse is no more
needed to compile sources!

• Changed: Cycler layout (Ctrl+Shift+F2) now contains also memory dump

• Changed: Ctrl+O starts a generic �le dialog to open any supported �le

• Bug Fixed: Drive CPU status was not displayed in Monitor view when
Drive device was selected (thanks to Javier Martin for bug report)

• Bug Fixed: Markers are cleared automatically after PRG load (thanks to
Alex Goldablat for bug report)

• Bug Fixed: Zooming in memory map was sometimes blocked

• Bug Fixed: Command line -help option now properly displays message box
on Windows (thanks to Timsa Uotila for bug report)

• Bug �xed: Painting on vertically-stretched multicolor sprite caused crash
(thanks to Isildur/Samar for bug report)

v0.64.2

• Bug �xed: VIC Sequencer state was displayed reversed (thanks to Mattias
Weidhagen for bug reporting)

• Bug �xed: Muting a channel in Stereo/Triple SID state view did not work
correctly

chapter 5.8 C64Debugger v0.64.56 page 32

• Bug �xed: Automatic loading of *.watch �le sometimes caused lock of the
debugger (thanks to Yugorin/Samar for bug reporting)

• Bug �xed: Automatic focus for C64 screen was not triggered (thanks to
Isildur/Samar for bug reporting)

• Bug �xed: Crash when ReSID emulation was selected and Run SID emu-
lation option was set to No (thanks to Isildur/Samar for bug reporting)

• Bug �xed: When PRG was selected from command line and disk was at-
tached with autorun set then the �le entry from D64 was started instead of
PRG (thanks to Isildur/Samar for bug reporting)

• Added: Saving VIC Display state with VCE �le (thanks to Isildur/Samar
for suggestion)

v0.64 (2017/12/24), X-Mas release!

• Added: JukeBox playlist feature! Allows to play your favourite demos from
playlist with transitions, run automated tests of your games and programs
with keystrokes and joystick movements, run your productions in Warp
mode and then do a memory dump after selected time... and more!

• Added: BASIC-compatible auto run

• Added: Setting CPU registers value in registers view

• Added: Setting for Stereo and Triple SID, showing registers of additional
SIDs in SID state view

• Added: Switch o� SID emulation in Settings

• Added: Mute audio using Ctrl+T shortcut, also select switch mute mode
between just muting the volume, or switching SID emulation o� when
muted, selectable in Settings (thanks to Mojzesh/Arise and Wegi/Elysium
for the help and idea)

• Added: Support of 64tass code labels

• Added: Automatically load Vice code labels if �le with *.labels extension
is found near loaded PRG

• Added: Watch selected memory locations (Ctrl+W), automatically load
*.watch �le with PRG. Simple for now, update soon!

• Added: Change menus colour theme and disassembly colour theme, new
menus colour themes by Mojzesh/Arise and Isildur/Samar

chapter 5.8 C64Debugger v0.64.56 page 33

• Added: Export sprite raw data with screen save

• Added: Show multi-colour charset in Vic Editor

• Added: Setting to adjust focus border width

• Change: You can now save current screen using Ctrl+Shift+E keyboard
shortcut in any view, not only Vic Editor

• Change: Saving current screen to �le also exports sprites data and charset
data

• Change: Shift+0 in Vic Editor sets both $D020 and $D021 colors

• Bug �xed: On Windows it was not possible to enter opcodes in the dis-
assembly pane due to keycodes mismatch (thanks to Scan/House for bug
report)

• Bug �xed: On MacOS accent keys that needed double keystroke on ISO
keyboards were not recognised (thanks to Ruben Aparicio for bug report
and great help with �xing)

• Bug �xed: Importing key map from �le caused corruption in key map editor
(thanks to Ruben Aparicio for bug report)

v0.62 (2017/08/02), released at Riverwash demo party

• Added: MIDI support, the usual -midi* command line �ags work as they
normally do in VICE itself. Thanks to David Hogans for help

• Added: Select audio out device via command line (-soundout <"device
name" | device number>)

• Added: Quick workaround for Linux open/save �le dialogs problems on
broken GTK, you can select custom open/save �le dialogs in Settings/UI
(no UTF support yet, sorry!)

• Bug �xed: Loading PRG while waiting after automatic Reset for previous
PRG load caused Fatal Error

• Bug �xed: Painting on vertically-stretched sprite caused crash

• And other overall tweaks here and there.

v0.60 (2017/06/23), released at Silesia 8 demo party.

See a promo video here: https://youtu.be/_s6s7qnXBx8

https://youtu.be/_s6s7qnXBx8

chapter 5.8 C64Debugger v0.64.56 page 34

• Added: Integrated Vice 3.1 emulation engine

• Added: new VIC Display screen (Ctrl+Shift+F5) and VIC Display lite
(Ctrl+Shift+F4)

• Added: new VIC Editor screen (Ctrl+Shift+F6). Simple for now, more
features on the way!

• Added: show music notes in SID State view

• Added: you can Ctrl+Click on Memory Dump or Memory Map view to
scroll Disassembly to code address that stored that value

• Added: you can follow code jumps and branches in Dissasembly view using
Right-Arrow key, and move back with Left-Arrow key, when argument is a
memory address then Data Dump view will be scrolled to that address

• Added: colors are shown in VIC State, also you can lock (Left Click) or
force (Right Click) these colors in previews

• Added: show code cycles in some Disassembly views

• Added: setting to completely stop SID emulation when in warp mode

• Added: setting to select nearest or billinear interpolation mode for rendering
of the C64 Screen in Settings

• Added: setting to select VIC colors palette in Settings

• Added: reset only disk drive by Ctrl+Alt+R

• Added: zoomed full screen in Ctrl+Shift+F1

• Added: save C64 screenshot and sprite bitmaps to PNG �les by
Ctrl+Shift+P

• Added: key shortcut to browse and run PRG �les from attached disk image
(F7)

• Added: key shortcut to auto run �rst PRG �le from the attached disk image
(F3)

• Added: setting and command line option to auto load and run �rst PRG
from inserted disk

• Added: key shortcut to switch auto run from disk (Ctrl+Shift+A)

chapter 5.8 C64Debugger v0.64.56 page 35

• Added: setting and command line option to always jmp to loaded PRG
address even if no Basic SYS is detected

• Added: setting and command line option to un-pause debugging code when
PRG is loaded

• Added: setting to reset or hard reset C64 before starting PRG

• Added: key shortcut to detach disk image (Ctrl+Shift+8), cartridge
(Ctrl+Shift+0) and everyting (Ctrl+Shift+D)

• Added: you can drag & drop �le into C64 Debugger window on MacOS &
Windows

• Added: mouse cursor is hidden when window is full screen, and only C64
Screen is shown (in Ctrl+F1 view)

• Change: default key mapping of OS '\' key changed to C64 key '='

• Change: default VIC colors palette changed to colodore

• Change: default SID model changed to 8580 FastSID

• Change: in Disassembly view you can move cursor to current address -1 by
[key, and to address +1 by] key

• Change: Settings menu is now split into sub-menus

• Bug �xed: processor status �ags were not correctly updated for N and Z
�ags (thanks to Flavioweb/Aura�Hokuto Force for reporting)

• Bug �xed: when loading PRG additional space in Basic SYS was not prop-
erly parsed giving wrong start address (thanks Yugorin/Samar for report-
ing)

• Bug �xed: when SYS is hidden by $00 trick the address was not properly
parsed (thanks Yugorin/Samar for reporting)

• Bug �xed: stored folders paths for D64/PRG/CRT were not properly set
in macOS Sierra open/save dialogs

• Bug �xed: the PC breakpoint did not stop code execution when it was
placed on �rst instruction after manual jump or IRQ, now it's properly
trapped (thanks to 64bites for reporting)

• Bug �xed: idle CIA timers were not properly updated when emulation
was paused or in single stepping mode (thanks Scan/House Designs for
reporting)

chapter 5.8 C64Debugger v0.64.56 page 36

• Bug �xed: code labels are properly placed in disassemble view after PRG
�le load

• Bug �xed: drive memory breakpoints were not correctly set

• Bug �xed: menu items for resetting the C64 were not properly handled

• Bug �xed: some another not done key mappings on Windows reported by
Isildur/Samar ;#)

• Windows binary is now signed. Thanks to Yugorin/Samar for donation!!

v0.56

• Bug �xed: Loading of PRG is now always to RAM (skipping I/O), not
based on value of $01 as previously (thanks DKT/Samar for spotting this)

• Bug �xed: Displaying Sprite bit states in compact VIC (Ctrl+F3) was
showing repeated states 1-4 for 5-8 and Sprite Exp states were displayed
only for Sprite #1 (thanks Scan/House for a bug report)

• Bug �xed: When no output audio device was found the debugger was closed
silently on startup throwing error only to system console. Now additional
error message box is displayed that audio device is missing (thanks Isil-
dur/Samar for a bug report)

• Added: "pass" command line option to pass parameters to already running
instance

• Added: S PRG function in monitor console to save memory dump as a PRG
�le

• Added: L PRG function in monitor console to load memory from a PRG
�le

• Added: D function in monitor to disassemble code, also to text �le

• Added: Setting to adjust fade out speed of memory markers

• Added: Setting to customise grid lines and raster cross colors

• Added: Setting to show debugger window always on top

• Added: Paste (Ctrl+V) hex data from system clipboard into RAM in mem-
ory dump view

v0.54 (2016/09/03), released at Riverwash Demoparty 2016

chapter 5.8 C64Debugger v0.64.56 page 37

• Bug �xed: S command in monitor saves last address byte inclusive as in
VICE monitor

• Bug �xed: Memory map was showing wrong values in $0000 and $0001

• Bug �xed: Audio output is reactivated when emulation speed is higher than
10% (thanks Scan/House for bug report)

• Bug �xed: Cycle-by-cycle screen refreshing tweaks. 8 additional pixels for
each VIC cycle were painted and sometimes one not needed additional line
in last VIC cycle was copied, that caused over-painting of whole spurious
background line to a current raster line

• Bug �xed: Breakpoints loaded from command line were not displayed in
disassembly view

• Bug �xed: Memory breakpoints less & greater were checked inversely

• Bug �xed: Windows: shifted keys are again working (damn Windows
WinAPI hell!). For C= + Shift press �rst Shift and then Left ALT

• Changed: When hex codes are not visible in disassembly view then all ???s
are displayed as hex codes

• Added: Keyboard shortcuts to control emulation speed (CTRL+[and
CTRL+])

• Added: Option in settings to switch on/o� the PC-execute-aware disas-
semble (switch to use straight disassemble as in any monitor instead of
PC-execute-aware)

• Added: New cycler-view (Ctrl+Shift+F2) for cycle-exact code debugging,
with VIC states, code labels and zoomed C64 screen (view suggested by
Brush/Elysium)

• Added: Loading and viewing Vice labels by new command line option:
-vicesymbols <�le-name>, visible in cycler-view.

• Added: autojmp command line option

• Added: New 0-cycle background value action for breakpoint. In break-
points �le you can set a background for PC address with "setbkg <addr>
<value>"

v0.52 (2016/06/25)

• Bug �xed: Key "7" was not mapped to C64 (thanks Wolfram Heyer for
spotting this)

chapter 5.8 C64Debugger v0.64.56 page 38

• Bug �xed: Basic pointers $2D-$32, $AE/$AF were initialised when PRG
is loaded and basic SYS is detected. That caused some decrunchers to
not work properly when PRG was started automatically (thanks Michael
Tackett for reporting and iAN CooG for help)

• C64 keyboard mapping screen in Settings

• Mapping keyboard shortcuts screen in Settings

• Mapping of C64 memory to a �le (read/write via mmap on MacOS/Linux,
read-only on Windows)

• Select Audio Output device in Settings

• Apply fast boot kernal patch in Settings

• When CPU is in jam state then CTRL+R will start running emulation
automatically (thanks Marc Schoe Nefeld for suggestion)

• Hi-res sprites in VIC state are rendered with their colours if colour data
rendering is selected (change with CTRL+K)

• Emulation Speed parameter in Settings

• Shortcut to Clear memory markers

• Save memory state & access markers to a CSV �le (suggested by Wackee)

v0.5 (2016/06/04)

• First public release at "Stary Piernik 11", Torun 2016

v0.41

• PAL/NTSC machine model select

• Fixed fullscreen problem on Windows

v0.4

• Memory map zoom and better marking of code-execute.

• Bug �xes.

v0.32

• Bug �xes.

chapter 5.8 C64Debugger v0.64.56 page 39

v0.31

• Step over JSR (Ctrl+F10), thanks Mr Wegi/Elysium for suggestion.

• Execute-aware code disassemble.

• Quick store & restore snapshots ([Shift+] Ctrl+1,2,...)

• UI tweaks suggested by Isildur.

v0.3

• Mark code execution (thanks Mr Wegi/Elysium for suggestion)

• Code monitor with basic commands DEVICE, F, C, H, T, L, S, G. (thanks
DKT for suggestion)

v0.22

• Additional Settings: choose SID model and SID engine, ICU colours scheme,
mute SID on pause, select joystick port, detach everything

• Store: default folders per �le type, last screen layout

• Settings are stored and restored on startup

• Linux tweaks

• Bug �xes

v0.21 (2016/04/30)

• Cartridge bank peek bug �xed, found by Mr Wegi/Elysium (thanks!)

• SID state bug �xed and waveform views added

• All data is now embedded into executable

• Code optimizations

v0.2 (2016/04/23)

• Cartridge support and memory peek

• 1541 drive breakpoints and debugging

• Added to command line: 'wait', 'layout', 'cartridge'

chapter 5.8 C64Debugger v0.64.56 page 40

• Bug �xes (thanks Isildur)

• Overall UI tweaks

v0.11 (2016/04/17)

• VICE chips state is displayed (including sprites)

• Some UX changes suggested by eLK/Avatar (thanks!)

v0.10 (2016/04/10)

• First Vice integration preview

v0.03 (2016/03/30) aka "Samar meeting version"

• Bug �xes.

v0.025 (2016/03/26)

• Tweaked disassemble code functionality

• Added: VIC/SID/CIA/Disk state screen

• Added: assemble mnemonics is possible in code view by pressing ENTER
key

• Added: Linux GTK3 open/save dialogs

v0.024 (2016/03/19)

• Cleaned engine. Code refactoring

• Mangled keyboard shortcuts a bit

• Added: mouse wheel scroll now works

• Added: 1541 disk breakpoints

v0.023 (2016/03/12)

• You can click inside memory map to scroll data dump view.

• Added: reading breakpoints �le

• Added: command line options

• Added: Ctrl+G for goto address in memory dump & disassemble

chapter 5.8 C64Debugger v0.64.56 page 41

• Added: in disassemble view: Ctrl+J make JMP to address shown by cursor

v0.022 (2016/03/05)

• Traversing views in a main screen using TAB or Shift+TAB keys.

• Added: Show current raster beam position (Ctrl+E)

• Added: Snapshots menu. Store and restore full snapshots at any emulation
cycle

v0.021 (2016/02/28)

• Fixed mapping of some keys on Windows (thx DKT & Isildur)

• ESC key returns, Alt+F4 closes app

• Added: Data dump view shows characters and sprites (Ctrl+K for colour
mode)

v0.02 (2016/02/27)

• Loading PRG automatically starts if SYS basic command is detected

• Disassembled code can be scrolled using keyboard

• Added: Data dump screen with hex editing

• Added: Memory breakpoints

v0.01-test2 (2016/02/20)

• Added: Breakpoints screen

• Added: Settings screen

v0.01-test1 (2016/02/15)

• First internal release

	Preface
	Installation
	Beer Donation
	Facebook page

	Global keyboard shortcuts
	Debugger elements
	Disassembly view
	Data dump view
	Memory map view
	Commodore 64 screen
	SID state view
	VIC state view
	VIC Display screen
	VIC Display screen keys

	VIC Editor screen
	VIC editor shortcuts

	Monitor screen
	Breakpoints
	Breakpoints screen
	Breakpoints screen keys
	Breakpoints file

	Invoking the debugger
	Command line options
	Code labels (symbols)
	Watches
	KickAss debug symbols
	C64Debugger - KickAss format

	JukeBox playlist and automated tests
	Global settings variables
	Action object variables

	Appendix
	Known bugs
	To do
	Thanks for testing
	Beer Donation
	Contact
	License
	Acknowledgements
	VICE License
	Commodore ROMs
	Libraries

	Change log

