clr: rem Reset all variables to 0 (better than 1=0:s=0:w=0:)

x=rnd(-1): rem use any negative number as initial seed value for pseudo randomizer/procedural generation
poke53280,0: rem Set frame color to black

poke53281,0: rem Set background color to black

h=1984: rem Startrow of Screen-RAM for water tank

p=1304: rem Startrow of Screen-RAM for facade

c=55576: rem Startrow nColor-RAM for facade

n=111: rem Constant for fire pressed value

d=102: rem Constant for PETSCII-value of the checkers symbol (=Fire)

m=599: rem Constant for max. number of characters to step through (15 rows of 40 characters, starting at 0)
0 g$="{home}{reverse off}{down}{down}{down}{light blue}u r ": rem Partial string for "You are F/Hired"-game over text

POO~NOUORAWNREO

11 rem *** definition of some city names known for skyscrapers (replace with your own) ***
12 ¢$(0)="{red}hong kong"

13 c$(1)="{blue}new york"

14 c$(2)="{orange}dubai”

15 c$(3)="{purple}tokyo"

16 c$(4)="{gray}shanghai"

17 c¢$(5)="{cyan}chicago"

18 ¢$(6)="{pink}singapore"

19 c$(7)="{green}toronto”

20 c$(8)="{brown}miami"

21 c$(9)="{light green}las vegas"
22 c$(10)="{yellow}congratulations"

23 g=10: rem Number of fires to extuingish per level

24 r=15: rem Row counter for facade building (r=rows)

25 s=s+w*50: rem Add the remaining water units to the score when going to the next level
26 print"{light blue}{clear}rank"ltab(9)"$"stab(24)c$(1)"{down}{down}{down}{down}{down}
{down}": rem Display status information a the top

27 fori=0to39: rem In this 40x loop there are 2 things happening... :)

28 s$=s$+"{black} ": rem Fill base string with black spaces

29 pokeh+i,247: rem Build lower water level status bar based on PETSCII-value 247

30 next

31 rem *** Creating the group of buildings (procedural generation) ***

32 rem The facade look & feel is being assembled in rows 200-430 (completing the base string x15).

33 rem For each line a house element will be added to the existing string at a position provided by the randomizer function.
34 rem The string in row 42 contains the actual graphic for one element.

35 rem Note: Maybe it makes you wonder why {light gray} is being repeated after each character.

36 rem The color/character-pairing is required so that the string always ends up exactly with 40 printable characters.

37 rem It would have been much simpler without the dark gray shadow, but it's a much nicer look & feel that way. :)

38 deffnr(x)=int(rnd(1)*x): rem Function definition of r(x) to return a random value for range x. Used a couple of times.
39 1$=left$(s$, fnr(33)*2): rem Get the leftmost n (1-32) characters from the last base string.

40 y=81: rem Constant for PETSCII-value circle (=searchlight)

41 v=10: rem General constant for value 10 (fires, length of house element, no of levels or color pink).

42 a$="{light gray}{cm m}{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P
{light gray}P"

43 b$=left$(a$,v+(fnr(5)*2)): rem Build a house element between 10-15 characters

44 1$=left$(1$+b$, 78)+"{dark gray}

P": rem Add the house element to the left part of the string and shorten it if bigger then 39 characters (color/char pairs).
45 1$=1$+right$(s$,80-1len(1$)): rem Fill the rest with rightmost part of the previous string

46 j=56320: rem Constant for Joystick Port 2 address

47 printl$;: rem Print the 40-character-row

48 s$=1$%$: rem Replace base string with base string plus new element

49 r=r-1: rem Decrease row counter

50 on-(r>0)goto38: rem Repeat as long as there are still rows to be drawn.

51 w=39: rem Set water variable to maximum

52 1=1+1: rem Increase level variable by 1

53 s$="": rem Set base string back to empty. Only relevant for next level.

54 r$="{red}f": rem set "F"ired value as default - will be used in line 9

55 fori=0to9: rem Also in the following 10x loop there are 2 things happening :)

56 print"{reverse on}{green} ";: rem 1. Print part of grass and 2. .

57 ifl>vthengoto63: rem do not place fires when end screen (10) is reached

58 o=fnr(m): rem Get a random position for a fire in the screen area

59 x(i)=o: rem Assign this position to a fire

60 on-(peek(p+0)<>80)goto58: rem No wall element at this position? Then try again with another value

61 pokep+o,d: rem Draw at this position the PETSCII checker symbol (=fire)

62 pokec+0,2: rem Write the color value light red to the same relative position but to the color-RAM

63 next: rem After this loop we have 10 relative screen positions stored in x()

64 ifl>vthend=83:r$="{green}

h'":goto98: rem Reached highest level/rank)? Then replace fire with heart symbol, set "H" for "Hired" and jump to end sequence

65 rem *** Here starts the main loop ***

66 fori=0tom: rem Loop 600x (40 characters x 15 rows) and do the following...

67 q=p+i: rem p+i is being used more than once. Makes the final code smaller.

68 f=peek(q): rem Save current character at this screen position.

69 pokeq,y: rem Write the PETSCII-symbol for circle (searchlight)

70 on-(peek(j)=n)goto76: rem Joystick button pressed? Then water on!

71 pokec+x(iand7),iandvor2: rem Set the fire color red(2) or light red(10) at one of the 10 fires.
72 pokeq,f: rem Replace the searchlight with the saved character.

73 next: rem Repeat until the bottom right corner is reached.

74 goto66: rem Then start again at the top left screen position.

75 rem *** Logic for when the Joystick button is being pressed ***

76 pokeh+w,32: rem Draw a space character at the current water level position.
77 w=w-1: rem decrease remaining water units by one.

78 fork=0to9: rem Check all 10 relative fire positions.

79 on-(x(k)=1i)goto87: rem identical with current Position? Then extinguish fire!
80 next

81 pokeq,f: rem Replace the searchlight with the saved character.

82 pokec+i,14: rem Mark this position with light blue (=color of water).

83 on-(w<0@)goto98: rem Water units all used up? Then go to "F"ired end sequence!
84 next: rem repeat until the bottom right corner is reached.

85 goto66: rem Then start again at the top left screen position.

86 rem: *** Logic for when a fire is being extinguished ***

87 x(k)=-1: rem Set the relative screen position of the fire to -1 (make it "out of scope").
88 s=s+500: rem Increase account by $500.

89 pokeq,f: rem Replace the searchlight with the saved character.

90 pokec+i,14: rem Mark this position with light blue (=color of water).

91 print"{home}{reverse off}{light blue}"tab(v)s: rem Update $ status on screen.

92 g=g-1: rem Extuingished another fire (minus 1).

93 on-(g=0)goto23: rem Extuingished all fires? Then go to another location (next level).

94 next: rem Do this until all 160 fire positions where checked.
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next: rem repeat until the bottom right corner is reached.
goto66: rem Then start again at the top left screen position.

rem *** Logic for when water is O (=Game Over) or Rank 10 has been reached (=Success) ***
ifpeek(j)=111goto98: rem wait for button press
x=fnr(m): rem Get random value for relative screen position.

on-(peek(p+x)=32)goto99: rem If there is a space character at this position then try again.

pokep+x,d: rem Draw a checker (fire) or a heart symbol (success) to that Screen-RAM position.

pokec+x,7: rem At the same relative position set the color yellow in the color RAM.

printg$r$"ired!": rem Print "Hired" or "Fired!" text.

ifpeek(j)<>111goto99: rem While no key is being pressed spread fire (or hearts) across the building blocks.

rem *** Show hi-score table ***

gosub158: rem initialize hi-score list (get from file if available)

print"{clear}{red}": rem clear screen and set character color to red

printtab(12)"*** hi-score ***": rem print title in center of screen

print: rem print empty row

hp=0: rem hi score pointer = index where new hi score goes in

t=9: rem initial tab position for printing the hiscore row

n$="": rem initialize name variable

cs$="{cm @} {left}{left}": rem cursor (underscore) including blanking of the rightmost character
fori=1tol@: rem loop through the 10 score elements/rows...
ifhp=0ands>=hs(i)thengosub127:hs(i)=s:hs$(i)="":hp=1i: rem if current score is higher than listed score: shift and replace
hs$=str$(hs(i)): rem convert number to string

hs$=right$(hs$, len(hs$)-1): rem remove leading blank

ifi=10thent=t-1:rem for the last row start at tab position 9 instead of 10.

printtab(t);: rem place cursor position at value of t(ab)

printi”"{left}. "right$("000000"+hs$,5)" "hs$(i): rem print name and score with leading zeros
print: rem print empty row

next

ifhp>0thengosub133: rem if hi score pointer was set in the loop above then let player enter name
ifpeek(j)<>11ithengotol24: rem wait for fire button on Joystick Port 2

goto@: rem restart game

rem *** Shift remaining score elements one element up ***

fork=10toistep-1: rem loop backwards from index 10 to the player's hi score position
hs(k)=hs(k-1): rem score at index 9 moves to 10, 8 moves to 9, etc.

hs$(k)=hs$(k-1): rem same for player name

next

return: rem return to next statement after gosub call

rem *** enter name ***

poke214,hp*2+1: rem set row where the high score pointer was found (Calculating row position from top based on hp index)
sys58732: rem place cursor at this row through kernal routine

printtab(19);cs$;: rem print cursor string

geta$: rem get last keypress value

ifa$=""thengotol36: rem if no key was pressed then try again

a=asc(a$): rem get ascii value of that key

iflen(n$)=0thengotol42: rem skip the following checks if entered name string is blank

ifa=13thengotol47: rem if return key was pressed then continue with save

ifa=20thenn$=left$(n$, len(n$)-
printa$;cs$;:gotol36: rem if delete key was pressed then delete last character and wait for next key press
if(a<35anda<>32)ora>90orlen(n$)
thengotol36: rem if invalid key was pressed or name is over 10 characters long then wait for next key press
n$=n$+a$: rem append current character to name string

printa$;cs$;: rem print pressed key together with cursor string that also includes cursor positioning for next key
gotol36: rem wait for next key press

rem *** save hi-score list ***

hs$(hp)=n$: rem assign entered name to hiscore table at hiscore pointer position

openl, 8,15, "s:ff64hiscore":closel: rem use SCRATCH (s:) command to delete an existing hiscore file on disk
openl, 8,1, "ff64hiscore,s": rem open disk channel to write (,1) to this filename sequentially (,s)
fori=1tol0: rem write 10x...

print#1,hs(i): rem write high score value

print#1,hs$(i): rem write high score name

next

closel: rem close channel

s=0: rem reset score variable so enter name subroutine is not called again

gotol07: rem show high score list again (this time without entering name)

rem *** initialize/load high score list ***

hs=10000: rem default top score is 10000

fori=1to10: rem for all 10 high score entries...

hs(i)=hs: rem assign a value

hs=hs-1000: rem next value will be 1000 units less
hs$(i)="firefighter": rem default name is firefighter

next

openi, 8,0, "ff64hiscore,s": rem open disk channel to read (,0) from high score filename
fori=1tol@: rem for all 10 high score entries...
input#1,hs(i): rem read high score value

input#1,hs$(1i): rem read high score name

next

closel: rem close channel

return: rem return to next statement after gosub call

rem (c) 2017 roman werner / @romwwer / roman.werner@gmail.com



