clr: rem Reset all variables to 0 (better than 1=0:s=0:w=0:)

x=rnd(-1): rem use any negative number as initial seed value for pseudo randomizer/procedural generation
poke53280,0: rem Set frame color to black

poke53281,0: rem Set background color to black

h=1984: rem Startrow of Screen-RAM for water tank

p=1304: rem Startrow of Screen-RAM for facade

c=55576: rem Startrow nColor-RAM for facade

n=111: rem Constant for fire pressed value

d=102: rem Constant for PETSCII-value of the checkers symbol (=Fire)

m=599: rem Constant for max. number of characters to step through (15 rows of 40 characters, starting at 0)
0 g$="{home}{reverse off}{down}{down}{down}{light blue}u r ": rem Partial string for "You are F/Hired"-game over text

POO~NOUORAWNREO

11 rem *** definition of some city names known for skyscrapers (replace with your own) ***
12 ¢$(0)="{red}hong kong"

13 c$(1)="{blue}new york"

14 c$(2)="{orange}dubai”

15 c$(3)="{purple}tokyo"

16 c$(4)="{gray}shanghai"

17 c¢$(5)="{cyan}chicago"

18 ¢$(6)="{pink}singapore"

19 c$(7)="{green}toronto”

20 c$(8)="{brown}miami"

21 c$(9)="{light green}las vegas"
22 c$(10)="{yellow}congratulations"

23 g=10: rem Number of fires to extuingish per level

24 r=15: rem Row counter for facade building (r=rows)

25 s=s+w*50: rem Add the remaining water units to the score when going to the next level
26 print"{light blue}{clear}rank"ltab(9)"$"stab(24)c$(1)"{down}{down}{down}{down}{down}
{down}": rem Display status information a the top

27 fori=0to39: rem In this 40x loop there are 2 things happening... :)

28 s$=s$+"{black} ": rem Fill base string with black spaces

29 pokeh+i,247: rem Build lower water level status bar based on PETSCII-value 247

30 next

31 rem *** Creating the group of buildings (procedural generation) ***

32 rem The facade look & feel is being assembled in rows 200-430 (completing the base string x15).

33 rem For each line a house element will be added to the existing string at a position provided by the randomizer function.
34 rem The string in row 42 contains the actual graphic for one element.

35 rem Note: Maybe it makes you wonder why {light gray} is being repeated after each character.

36 rem The color/character-pairing is required so that the string always ends up exactly with 40 printable characters.

37 rem It would have been much simpler without the dark gray shadow, but it's a much nicer look & feel that way. :)

38 deffnr(x)=int(rnd(1)*x): rem Function definition of r(x) to return a random value for range x. Used a couple of times.
39 1$=left$(s$, fnr(33)*2): rem Get the leftmost n (1-32) characters from the last base string.

40 y=81: rem Constant for PETSCII-value circle (=searchlight)

41 v=10: rem General constant for value 10 (fires, length of house element, no of levels or color pink).

42 a$="{light gray}{cm m}{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P{light gray}P
{light gray}P"

43 b$=left$(a$,v+(fnr(5)*2)): rem Build a house element between 10-15 characters

44 1$=left$(1$+b$, 78)+"{dark gray}

P": rem Add the house element to the left part of the string and shorten it if bigger then 39 characters (color/char pairs).
45 1$=1$+right$(s$,80-1len(1$)): rem Fill the rest with rightmost part of the previous string

46 j=56320: rem Constant for Joystick Port 2 address

47 printl$;: rem Print the 40-character-row

48 s$=1$%$: rem Replace base string with base string plus new element

49 r=r-1: rem Decrease row counter

50 on-(r>0)goto38: rem Repeat as long as there are still rows to be drawn.

51 w=39: rem Set water variable to maximum

52 1=1+1: rem Increase level variable by 1

53 s$="": rem Set base string back to empty. Only relevant for next level.

54 r$="{red}f": rem set "F"ired value as default - will be used in line 9

55 fori=0to9: rem Also in the following 10x loop there are 2 things happening :)

56 print"{reverse on}{green} ";: rem 1. Print part of grass and 2. .

57 ifl>vthengoto63: rem do not place fires when end screen (10) is reached

58 o=fnr(m): rem Get a random position for a fire in the screen area

59 x(i)=o: rem Assign this position to a fire

60 on-(peek(p+0)<>80)goto58: rem No wall element at this position? Then try again with another value

61 pokep+o,d: rem Draw at this position the PETSCII checker symbol (=fire)

62 pokec+0,2: rem Write the color value light red to the same relative position but to the color-RAM

63 next: rem After this loop we have 10 relative screen positions stored in x()

64 ifl>vthend=83:r$="{green}

h'":goto98: rem Reached highest level/rank)? Then replace fire with heart symbol, set "H" for "Hired" and jump to end sequence

65 rem *** Here starts the main loop ***

66 fori=0tom: rem Loop 600x (40 characters x 15 rows) and do the following...

67 q=p+i: rem p+i is being used more than once. Makes the final code smaller.

68 f=peek(q): rem Save current character at this screen position.

69 pokeq,y: rem Write the PETSCII-symbol for circle (searchlight)

70 on-(peek(j)=n)goto76: rem Joystick button pressed? Then water on!

71 pokec+x(iand7),iandvor2: rem Set the fire color red(2) or light red(10) at one of the 10 fires.
72 pokeq,f: rem Replace the searchlight with the saved character.

73 next: rem Repeat until the bottom right corner is reached.

74 goto66: rem Then start again at the top left screen position.

75 rem *** Logic for when the Joystick button is being pressed ***

76 pokeh+w,32: rem Draw a space character at the current water level position.
77 w=w-1: rem decrease remaining water units by one.

78 fork=0to9: rem Check all 10 relative fire positions.

79 on-(x(k)=1i)goto87: rem identical with current Position? Then extinguish fire!
80 next

81 pokeq,f: rem Replace the searchlight with the saved character.

82 pokec+i,14: rem Mark this position with light blue (=color of water).

83 on-(w<0@)goto98: rem Water units all used up? Then go to "F"ired end sequence!
84 next: rem repeat until the bottom right corner is reached.

85 goto66: rem Then start again at the top left screen position.

86 rem: *** Logic for when a fire is being extinguished ***

87 x(k)=-1: rem Set the relative screen position of the fire to -1 (make it "out of scope").
88 s=s+500: rem Increase account by $500.

89 pokeq,f: rem Replace the searchlight with the saved character.

90 pokec+i,14: rem Mark this position with light blue (=color of water).

91 print"{home}{reverse off}{light blue}"tab(v)s: rem Update $ status on screen.

92 g=g-1: rem Extuingished another fire (minus 1).

93 on-(g=0)goto23: rem Extuingished all fires? Then go to another location (next level).

94 next: rem Do this until all 160 fire positions where checked.

95
96

97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
1):
142
>10
143
144
145

146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

next: rem repeat until the bottom right corner is reached.
goto66: rem Then start again at the top left screen position.

rem *** Logic for when water is O (=Game Over) or Rank 10 has been reached (=Success) ***
ifpeek(j)=111goto98: rem wait for button press
x=fnr(m): rem Get random value for relative screen position.

on-(peek(p+x)=32)goto99: rem If there is a space character at this position then try again.

pokep+x,d: rem Draw a checker (fire) or a heart symbol (success) to that Screen-RAM position.

pokec+x,7: rem At the same relative position set the color yellow in the color RAM.

printgr"ired!": rem Print "Hired" or "Fired!" text.

ifpeek(j)<>111goto99: rem While no key is being pressed spread fire (or hearts) across the building blocks.

rem *** Show hi-score table ***

gosub158: rem initialize hi-score list (get from file if available)

print"{clear}{red}": rem clear screen and set character color to red

printtab(12)"*** hi-score ***": rem print title in center of screen

print: rem print empty row

hp=0: rem hi score pointer = index where new hi score goes in

t=9: rem initial tab position for printing the hiscore row

n$="": rem initialize name variable

cs$="{cm @} {left}{left}": rem cursor (underscore) including blanking of the rightmost character
fori=1tol@: rem loop through the 10 score elements/rows...
ifhp=0ands>=hs(i)thengosub127:hs(i)=s:hs$(i)="":hp=1i: rem if current score is higher than listed score: shift and replace
hs$=str$(hs(i)): rem convert number to string

hs$=right$(hs$, len(hs$)-1): rem remove leading blank

ifi=10thent=t-1:rem for the last row start at tab position 9 instead of 10.

printtab(t);: rem place cursor position at value of t(ab)

printi”"{left}. "right$("000000"+hs$,5)" "hs$(i): rem print name and score with leading zeros
print: rem print empty row

next

ifhp>0thengosub133: rem if hi score pointer was set in the loop above then let player enter name
ifpeek(j)<>11ithengotol24: rem wait for fire button on Joystick Port 2

goto@: rem restart game

rem *** Shift remaining score elements one element up ***

fork=10toistep-1: rem loop backwards from index 10 to the player's hi score position
hs(k)=hs(k-1): rem score at index 9 moves to 10, 8 moves to 9, etc.

hs$(k)=hs$(k-1): rem same for player name

next

return: rem return to next statement after gosub call

rem *** enter name ***

poke214,hp*2+1: rem set row where the high score pointer was found (Calculating row position from top based on hp index)
sys58732: rem place cursor at this row through kernal routine

printtab(19);cs$;: rem print cursor string

geta$: rem get last keypress value

ifa$=""thengotol36: rem if no key was pressed then try again

a=asc(a$): rem get ascii value of that key

iflen(n$)=0thengotol42: rem skip the following checks if entered name string is blank

ifa=13thengotol47: rem if return key was pressed then continue with save

ifa=20thenn$=left$(n$, len(n$)-
printa$;cs$;:gotol36: rem if delete key was pressed then delete last character and wait for next key press
if(a<35anda<>32)ora>90orlen(n$)
thengotol36: rem if invalid key was pressed or name is over 10 characters long then wait for next key press
n$=n$+a$: rem append current character to name string

printa$;cs$;: rem print pressed key together with cursor string that also includes cursor positioning for next key
gotol36: rem wait for next key press

rem *** save hi-score list ***

hs$(hp)=n$: rem assign entered name to hiscore table at hiscore pointer position

openl, 8,15, "s:ff64hiscore":closel: rem use SCRATCH (s:) command to delete an existing hiscore file on disk
openl, 8,1, "ff64hiscore,s": rem open disk channel to write (,1) to this filename sequentially (,s)
fori=1tol0: rem write 10x...

print#1,hs(i): rem write high score value

print#1,hs$(i): rem write high score name

next

closel: rem close channel

s=0: rem reset score variable so enter name subroutine is not called again

gotol07: rem show high score list again (this time without entering name)

rem *** initialize/load high score list ***

hs=10000: rem default top score is 10000

fori=1to10: rem for all 10 high score entries...

hs(i)=hs: rem assign a value

hs=hs-1000: rem next value will be 1000 units less
hs$(i)="firefighter": rem default name is firefighter

next

openi, 8,0, "ff64hiscore,s": rem open disk channel to read (,0) from high score filename
fori=1tol@: rem for all 10 high score entries...
input#1,hs(i): rem read high score value

input#1,hs$(1i): rem read high score name

next

closel: rem close channel

return: rem return to next statement after gosub call

rem (c) 2017 roman werner / @romwwer / roman.werner@gmail.com

