
CSAM SUPER
A GENETIC VECTOR QUANTIZATION HILL CLIMBING VIDEO/IMAGE ENCODER FOR

THE C64
 BY ALGORITHM / ALGOTECH (C) 2014

WHAT IS IT?

CSAM Super is the 4th version of my Image/Video compression tool specifically designed for fast decoding
on the C64.

It utilises several state of the art algorithms all which have been developed and realised by myself (with the
exception of the LBG clustering algorithm that can be initially used by the tool to 'speed up the final 'solution'

It is a VQ based encoder (Vector quantization). The encoder collates all 8x8 blocks in the whole
image/animation and choses 256 blocks (or lower) that in theory would best represent the whole image or
animation.

How would the blocks be chosen? Well, this is still ongoing research with hundreds of variations developed
by various research labs. Before I describe how this program choses these blocks, below is the summary of
the previous CSAM versions and the methods that they had used to chose these blocks.

CSAM V1.
This application was created and used to produce the Video in my previous 'Sabrina demo' that was
released sometime in 2006/2007. It does not have any 'intelligent' options for selection. The main core of
the application is via user intervention where the user will have to manually chose blocks from the
animation/image until the result is of a 'decent' quality. There is no clustering in use and each block is a
direct 1:1 copy

CSAM V2
This was far more advanced than the previous, but some of its features were half finished. It utilises
clustering options (LBG) allowing less user intervention. Quality leaves a lot to be desired

CSAM V3
This introduces the PNN (Nearest neighbour clustering algorithm) in combination with LBG clustering.
Results are higher than the previous version

Now onto CSAM V4 (CSAM SUPER)..
PLEASE READ THE BELOW, IT WILL GIVE MORE OF AN UNDERSTANDING OF THE OPERATION OF
THE PROGRAM!

CSAM Super utilises optional initial LBG clustering, but improves upon this far more by utilising mutation
based Hill climbing.

Brief description of the algorithm as below..

256 (or a user defined) amount of 8x8 blocks are chosen at random from the entire image/animation. To
speed up later encoding and to increase the quality of the random selection, only original 8x8 blocks
(different) are used. Why 8x8? This is due to the c64's built in tile capabilities that can plot an 8x8 block by
one byte write.

To ensure that each block can resemble more of the image, LBG clustering is then used. LBG clustering
reads each 8x8 block in the origjnal image/animation and clusters around the codevector (those 256 blocks
that were chosen randomly) that is most closest to it.

Once all blocks in the source image/animation have been read, the clusters are merged to form a new set of
256 blocks. You will now find that most of these individual blocks can best resemble more of the sections in
the image/animation. This is further iterated until convergence.

There is a weakness in this method however. It will be very common that there will be a considerable
amount of codevectors that the source blocks did not cluster with at all. This increases the error of the image
as it will in most cases only resemble a 8x8 block in the image.
This is beneficial for important area's of the image, but too many non clustered blocks will cause issues. (See
Figure 1.1)

FIGURE 1.1. IMAGE GENERATED BY LBG

This is where ELBG (Enhanced LBG) can be used which identifies these blocks and shifts these in order to
allow merging. Quality increase is rather significant (Figure 1.2)

FIGURE 1.2. IMAGE GENERATED BY ELBG

CSAM Super uses a completely different and more effective approach to identify blocks and to chose more
optimum ones.

Once CSAM has LBG merged the blocks, it then starts a heuristic based 'blind approach' that picks 8x8
blocks from the source image at random and maps it to a random section in the codebook.
For each iteration, the error is analysed and worse errors result in 'undo-ing' of the modification.

What this tends to do after many iterations is that it removes the 'weak' 8x8 blocks in the codebook and
replaces it with more optimum ones.

LBG can then be run again and this normally results in less errors due to more merging.

Just this process along results in quality far more superior than LBG with substantial improvements over
ELBG/PNN

The encoder can then also apply various other options for codebook selection such as

Best Mate mutation
A new member is introduced into the population and he immediately merges himself with a female that is
most closest to his 'personality' Before this is finalised, they both check whether or not, they have made an
improvement. If so, they live for the time being, otherwise they split from each other. She stays and the
male leaves

Best mate greedy (random)
A new member is introduced into the population, the difference here however is that he is greedy and
decides to merge with the first female he see's

Furthermore unlike ELBG and other codebook generation methods, there is the option to use the standard
8x8 mode as well as 8x4 and 4x4 mode (This uses a 4x4, 8x4 section from anywhere in the source
animation image and merges itself to an edge of a particular 8x8 codevector (this reduces errors significantly
(See Figure 1.3)

FIGURE 1.3 (IMAGE GENERATED BY CSAM SUPER)

The encoder can also weigh specified blocks more or less than others. This data can be manually drawn
over the preview image for ease of use.

This ensures that important sections (for the user) are prioritized more than non important sections. (For
example, there could be an image of a someones face with lots of hair. The VQ encoder would allocate just
as much importance to the hair, leaving the other face sections of equal quality). Applying the weighting
sections can result in an image like the below (FIGURE 1.4)

FIGURE 1.4 (IMAGE GENERATED BY CSAM SUPER – WEIGHT MODE)

There were a few initial obstacles which caused an issue and they were mainly related to the initial version of
the VQ decode. As mentioned previously, A VQ decode takes place after each codebook merge/selection to
determine whether to keep the selection or discard it. This has to be done many tens of thousands of times.
Luckily i am using a lazy VQ encode method which is just as optimal and this results in a major speedup.

There is also the limitation of the 'hill climbing' approach hitting a local minimum. (This is where there needs
to be a substantial reorganising and change in codevectors in order to improve the results.

This is where i have used two additional hill climbing methods which take far longer but normally create more
optimum final results (Late Acceptance hill climbing and Step count hill climbing (More on that later)

Now onto the application itself.

THE APPLICATION

FILE LOAD / SAVE

OPEN AVI
Open and load an AVI file. If the video is larger than 320x200
or has more than 256 frames, it will use the first 256 frames
and crop to 320x200 from the top left hand corner. You MUST
set the start frame and number of frames before.

OPEN IMAGE
Loads a bitmap image. If the image is larger than 320x200,
then it crops the image to 320x200.

OPEN CODEBOOK
Open a previously saved codebook (To continue from where
you left off)

SAVE VQ IMAGE
Save the current converted truecolor image

SAVE CODEBOOK
Save the generated codebook

START FRAME / FRAME AMOUNT

This is where you SPECIFY where the image/animations will be loaded to (as well as the amount of frames.)
This needs to be set beforehand, otherwise the animation will only be loaded as one frame (or the amount of
frames specified) Another thing to bear in mind is that the Encoder will ONLY operate on these frames. If
there is any data that is outside this range, the VQ encoder will still make an attempt to encode the data, but
quality for these outside frames will suffer.

PREVIEW FRAME / PROCESS / CONTINUE / STOP

Adjusting the frames let you preview the frames that are encoded.
PROCESS – This option starts encoding from scratch (and generates a new random codebook) As the
mutation / hill climbing operates in a random nature, you will find that quality increase may occur on several
runs.

CONTINUE - This allows the encoder to continue without changing the codebook that may have previously
been generated. Options can be tweaked

STOP – The encoder runs forever. To stop the process, press the stop button

STATUS BAR

This is very useful and allows the user to see whether or not there is any improvement that is made to the
image. (Errorvalue. The lower the number, the 'closer' it is to the source image as a whole)

As mentioned previously, the settings in the encoder can be changed while the data is being encoded, Pay
attention to the 'errorvalue'

ITERATIONS PER UPDATE

The lower the number, the quicker the user see's any changes on the screen. (Recommended to keep this
number higher than 1000) - This is also linked to the counter that activates the LBG (Will change this in a
future release) It is recommended to initially use an iteration value of around 25000 (default). This will result
in the image being encoded with more positive changes before any future lbg encode. A lower value will
mean that the lbg encode will be activated after only x iterations. This does not apply if LBG mode is turned
off.

MUTATION MODES

Determines what to do with the 8x8 block that is chosen from the source image. It is always recommended
to keep this option on 'off' initially. When there is less improvement in the error, then to adjust while running
to the other modes.

Mutation mode off – Direct copy and comparison from source image / animation to codebook
Mutation mode mate closest – Merge with closest codebook entry
Mutation mode blind force – Faster than the above, but least likely to produce a positive outcome

EXTRACT MODES

These options are used together with the mutation modes. Extracting 8x4 or 4x4 blocks into a specific
corner of a codebook takes longer, but results in higher quality. Recommended initially to use 8x8 (with
mutation mode off) Then when there are less error changes, to select mutation closest. Then 8x4 and 4x4
until error changes are less.

MOTION STATIC

This option is useful only in video mode. It ensures that slightly moving sections (eg background) remain
static which helps in quality and compression of individual frames – eg delta. Higher values result in more
sections remaining static. If you are not happy with the result, select '0' and run motion static to reset. (or
use a lower number) You should only use this option when the encoder is 'stopped' You may preview the
results by changing the preview frames to go back/forwards between each frame.

DITHER

Only used for preview purposes (to give a rough insight of how the image may look like on the c64) The
main GUI has 4 images (Top Left is the original) – (Top right is the original VQ encoded) – (Bottom left is the
C64 color conversion from the original image) – (Bottom right is the C64 color conversion of the VQ encoded
image) – To see the actual quality of how it would look like on a C64, the 'C64 studio' Option must be used.
(More on that later) – The settings above do not need any explaining. This option together with the
brightness and contrast gives a quick preview of how the final image may look like (Its a good idea to adjust
these together with the brightness and contrast before encoding)

CONTRAST / BRIGHTNESS

This option should only be used before encoding (It can be used while encoding, but this would result in the
VQ encoder having to reencode the data (as the source data will have changed) – Furthermore, it may result
in the VQ encoder not able to improve any further – As the error rate after the change cannot result in an
improvement by just one codevector update (If this is the case, then stop the encoder and continue – Which
recalculates the errors)

COLOR MODE

Specify whether to encode in color or grayscale. Color encoding takes more time and image quality can
suffer even more than grayscale due to the requirement of more image blocks in color to have similar quality
as it would do in grayscale. When changing the mode, the codebook is deleted and the data has to be
recalculated.

BLOCKAMOUNT

Default is at 256 (recommended) Using a lower amount reduces the quality but may be required in the case
of perhaps requirement (eg if encoding for Atari that can only use 128 chars in char mode)

LBG OPTIONS

Specifies whether or not LBG clustering will be used alongside the Genetic Hill climbing method. It is
recommended to leave this on. However if stopping the encoder, this method can later be switched off and
then the continue option can be used to tweak codebooks without having to run the lbg again.

The amount of passes indicate how many times the LBG will run. This is used alongside the 'Iterations per
update option' eg. If the amount of passes is '3'. And iterations per update is 10,000. The LBG will run
initially when the encoder is started, and then after every 10,000 changes, it will run it again for x amount of
times.

The iterations in each pass option is the amount of times that the LBG will iterate. Normally not much point
setting this to a value above 30.

HILL CLIMBING OPTIONS

The encoder utilises Hill climbing in combination with the LBG and mutation approach. Information on the hill
climbing modes as below

Standard Hill climb – If encoded results are better than previous then keep, otherwise discard
This is the fastest option and normally should be the one to use if time is an issue (In combination with the
mutation and block extract options, it will result in a high quality codebook)

Late acceptance Hill climb. If encoded results are better then previous, keep, if not, then compare error to
previous x (lahc) steps back, if lower then keep, otherwise discard
Recommended minimum LAHC memory number is 512. This method allows worsening moves which
prevent the encoding hitting a local minimum

Step counting hill Climb – If encoded results are worse then the saved error, then discard, otherwise accept
and increase counter. Do not update error and keep the saved error, until the counter has been reached.
Then update the error value
This in most cases is even more effective than the Late acceptance hill climbing method. Again this option
as well as the LAHC take far far longer to reach acceptable quality, but normally results in less errors.

CODEBOOK OPTIONS

Byte Occurance mode – When this is activated, it allows the user to select a codevector (original or c64
preview) and it displays where the codevectors are located on the encoded image – Can be useful.

Manual Codebook – When this is activated, the user can use the mouse over any of the preview images and
click on a section to save the 8x8 block into the codebook table. A codebook to replace can be selected as
well.

Autoincrement – Instead of constantly going backwards and forwards between the source image and the
codebook, this increments the codebook counter allowing the user to 'paint' away.

These above options can be used if wanting to override codebook values. (As with all the other options,
updates are in realtime)

Please note that there is a possibility of the encoder not able to reduce the errors if many successive
changes have been made to the codebook (if this is the case, then stop the encoder, Turn off/on lbg if
required, and then continue the encoding which recalculates the errors.

WEIGHTING OPTIONS

A powerful tool which can dramatically increase the quality of the result. The encoder attempts to reduce
the whole total error of the source image/animation in comparison to the result that is constantly being
encoded. Unfortunately it has no way of knowing which sections are more important than others (an
exception can be made if utlising face tracking, which may make it in a future version)

The weighting option when turned on allows the user to paint over sections that are non important, neutral
(default), important or very important. This can be done frame by frame (by using the current frame toggle to
switch between the frames)

Select the required priority button and then paint over the sections. This should be done when the encoder
is stopped as it will more than likely result in the encoder not being able to make any improvement until
recalculation (via stop button and continue)

The error amount may be higher, but the percieved error (if the weighting options are used properly) will be
less.

If you find that the important sections are still not being encoded properly, then use the non priority option to
paint over sections that are not important. This will start the reassigning procedure.

Again as noted previously, for initial fast results, always ensure that mutation mode is turned off initially and
8x8 mode is selected. Then gradually apply the other mutation modes while encoding.

BYTE USAGE

Selecting this option gives some statistical information on the whole animation and individual image that can
be previewed and updated in real time.

C64 STUDIO

This section is the section to use once you are happy with the encode results. This module allows the user
to save the data to c64 format including raw VQ frames (1k each frame), codebook data (in c64 format) as
well as even self runnable C64 files.

Self runnable C64 files in this module have a limit of around 40 frames (and around 34 frames in bitmap
mode) This will be increased when the 'Compression studio' has been implemented in CSAM Super.

Changes are ONLY made when the process button is pressed

Some information on the modes as below.

MCOL4

Converts the video/image into 4 colors (standard char mode) with no additional color requirement. This is
the least CPU intensive C64 mode and does not require plotting of color data.

Non Interlaced – 2048 bytes codebook data 4 colors
Interlaced – 4096 bytes codebook data. 4 colors xshifted for 320x200 'resolution'

Xflicker and Y flicker can be applied to reduce the flicker. Please bear in mind that using these options can
increase the flicker. X flicker on its own tends to work better (and X and Y flicker works well for block
diffusion mode (Block diffusion mode is experimental) and most of the time can give images of poor quality.

The block diffusion option works by diffusing only inside the 8x8 block which is useful for compression in this
case.

MCOL CHAR

Uses standard Char mode, but this time a more complex method of color reduction is used. This variation
can only have 3 different colors for the whole image (and then for each block, only an additional color (the
first 8)

Non interlaced – 2048 bytes codebook
Interlaced – 4096 bytes codebook data.
D800data. 259 bytes of data with each byte having a 0-7 color and associating itself with the codebook.
Bytes 256-258 are the d022, d023 and d021 data (if saving as raw)

As mentioned previously, experiment with the xflicker and yflicker options. If you are not happy with the
results that the converter has created, you may override the brute force and select the color values yourself
(3 universal colors)

Full quantize option dithers the colors before quantizing, while not using this option quantizes directly from
the truecolor image (normally full quantize gives better results)

CHAR HIRES

Hires mode that has the following options

Non interlaced – Standard hires char mode
Interlaced – An additional color is produced by the mix of two colors – please note that there are no luma
checks, it is down to the user to select colors that are not conflicting too much

Two color mode – When this option is on, there is no requirement for the c64 decode to plot color data.
When two color mode is turned off. The brute force option is used to generate 2 colors (including an
inbetween color) for each 8x8 block. This has more impact on the decoder (c64) as it has to also plot the
color data for each frame – again luma is not checked. Will incorporate in a future version

Force d021 value – If results dont look too good in the non-two color mode, you can manually change this
value and experiment with various values.

Pre-dither. Dither the image before quantizing. Normally gives higher quality.

BITMAP MODE

Both Hires modes and Lores modes are brute force trying all possible combinations of d021, ink, paper, d800
for each block. To speed things up, D021 can be forced.

The C64 decoder is not optimised hence only runs at around 5 frames per second. But ok for a preview.

SYSTEM REQUIREMENTS
Requires around 700mb ram and a minimum HD display (recommended 1920x1080) – May change the GUI
to fit more on other PC's

There are two C64 self runnable demo's to give a rough idea of the quality thats possible with this encoder.

OTHER INFO

Please send me any bug reports (I am aware of a few) and any additional features and idea's that you may
want me to possibly incorporate into this tool.

Email
thealgorithm@msn.com

Facebook
https://www.facebook.com/thealgorithm

IRC
I can sometimes be reached via IRC at #c-64 (ircnet)

CSDB.
Http://csdb.dk

CSAM VIDEO PREVIEWS

Operation of program
http://www.youtube.com/watch?v=-jSUS4nBaqE

Export options
http://www.youtube.com/watch?v=G_XR6R5lvns

C64 output
http://www.youtube.com/watch?v=_kflgq4BEtY

mailto:thealgorithm@msn.com
http://www.youtube.com/watch?v=_kflgq4BEtY
http://www.youtube.com/watch?v=G_XR6R5lvns
http://www.youtube.com/watch?v=-jSUS4nBaqE
http://csdb.dk/
https://www.facebook.com/thealgorithm

